Effect of Printing Parameters on Mode i Fracture Toughness of FFF Printed PLA Samples

Article Preview

Abstract:

3D printing, commonly referred to as Additive Manufacturing (AM), enables the creation of both simple and complex three-dimensional objects. While AM encompasses a variety of manufacturing techniques, Fused Filament Fabrication (FFF), is the most prevalent method. FFF constructs 3D models layer-by-layer by extruding molten material in a specified pattern. This paper examines the fracture properties of components produced through the FFF process. To achieve this, Single Edge Notched Bend (SENB) specimens were fabricated from polylactic acid (PLA) thermoplastic material. Various printing parameters were explored, including infill density (40, 70, and 100%), infill patterns (grid, cubic, and concentric), and printing directions (0, 45, and 90°). Three-point bending (3PB) tests were conducted at room temperature (25 °C) in accordance with ASTM D5045-14 standards. The 3PB results indicate that the mode I fracture toughness values are significantly affected by the printing parameters examined, with the greatest variations linked to infill density, followed by infill pattern and printing direction. Additionally, the fracture mechanisms associated with SENB specimens produced under different parameters exhibited distinct characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1167)

Pages:

47-54

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Vălean, E. Linul, D.K. Rajak, Compressive performance of 3D-printed lightweight structures: Infill pattern optimization via Multiple-Criteria Decision Analysis method, Results Eng. 25 (2025) 103936.

DOI: 10.1016/j.rineng.2025.103936

Google Scholar

[2] D.A. Șerban, A.V. Coșa, G. Belgiu, R. Negru, Failure locus of an ABS-based compound manufactured through photopolymerization, Polym. 14(18) (2022) 3822.

DOI: 10.3390/polym14183822

Google Scholar

[3] M. Petousis, N. Vidakis, N. Mountakis, E. Karapidakis, A. Moutsopoulou, Functionality versus sustainability for PLA in MEX 3D printing: The impact of generic process control factors on flexural response and energy efficiency, Polym. 15 (2023) 1232.

DOI: 10.3390/polym15051232

Google Scholar

[4] G. Epasto, F. Distefano, L. Gu, et al., Design and optimization of Metallic Foam Shell protective device against flying ballast impact damage in railway axles, Mater. Des. 196 (2020) 109120.

DOI: 10.1016/j.matdes.2020.109120

Google Scholar

[5] D.G. Zisopol, M. Minescu, D.V. Iacob, A Study on the Influence of FDM Parameters on the Compressive Behavior of PET-G Parts, Eng. Technol. Appl. Sci. Res. 14(2) (2024) 13592-7.

DOI: 10.48084/etasr.7063

Google Scholar

[6] N. Vidakis, M. Petousis, E. Karapidakis, N. Mountakis, C. David, D. Sagris, Energy consumption versus strength in MEΧ 3D printing of polylactic acid, Adv. Ind. Manuf. Eng. 6 (2023) 100119.

DOI: 10.1016/j.aime.2023.100119

Google Scholar

[7] C. Vălean, E. Linul, G. Palomba, G. Epasto, Single and repeated impact behavior of material extrusion-based additive manufactured PLA parts, J. Mater. Res. Technol. 30 (2024) 1470-1481.

DOI: 10.1016/j.jmrt.2024.03.150

Google Scholar

[8] D.A. Șerban, C. Marșavina, A.V. Coșa, G. Belgiu, R. Negru, A study of yielding and plasticity of rapid prototyped ABS, Math. 9(13) (2021) 1495.

DOI: 10.3390/math9131495

Google Scholar

[9] C. Vălean, L. Marșavina, E. Linul, Compressive behavior of additively manufactured lightweight structures: infill density optimization based on energy absorption diagrams, J. Mater. Res. Technol. 33 (2024) 4952-4967.

DOI: 10.1016/j.jmrt.2024.10.143

Google Scholar

[10] D.G. Zisopol, M. Minescu, D.V. Iacob, A study on the influence of FDM parameters on the tensile behavior of samples made of PET-G, Eng. Technol. Appl. Sci. Res. 14(2) (2024)13487-92.

DOI: 10.48084/etasr.6949

Google Scholar

[11] V. Cojocaru, D. Frunzaverde, C. Miclosina, G. Marginean, The influence of the process parameters on the mechanical properties of PLA specimens produced by fused filament fabrication A review, Polym. 14(5) (2022) 886.

DOI: 10.3390/polym14050886

Google Scholar

[12] D.I. Stoia, E. Linul, Tensile, flexural and fracture properties of MEX-printed PLA-based composites, Theor. Appl. Fract. Mech. 132 (2024) 104478.

DOI: 10.1016/j.tafmec.2024.104478

Google Scholar

[13] J.D. Kechagias, N. Vidakis, M. Petousis, N. Mountakis, A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing, Mater. Manuf. Processes 38(8) (2023) 941-953.

DOI: 10.1080/10426914.2022.2089895

Google Scholar

[14] D.G. Zisopol, A.I. Portoaca, I. Nae, I. Ramadan, A comparative analysis of the mechanical properties of annealed PLA, Eng. Technol. Appl. Sci. Res. 12(4) (2022) 8978-81.

DOI: 10.48084/etasr.5123

Google Scholar

[15] C. Vălean, M. Baban, D.K. Rajak, E. Linul, Effect of multiple process parameters on optimizing tensile properties for material extrusion-based additive manufacturing, Constr. Build. Mater. 414 (2024) 135015.

DOI: 10.1016/j.conbuildmat.2024.135015

Google Scholar

[16] A. Milovanović, S.-V. Galațanu, A. Sedmak, L. Marșavina, I. Trajković, C.-F. Popa, Layer thickness influence on impact properties of FDM printed PLA material, Procedia Struct. Integr. 56 (2024) 190-197.

DOI: 10.1016/j.prostr.2024.02.055

Google Scholar

[17] C. Valean, D.I. Stoia, C. Opris, E. Linul, Effect of fillers on mechanical properties of FDM printed PLA components, Procedia Struct. Integr. 56 (2024) 97–104.

DOI: 10.1016/j.prostr.2024.02.043

Google Scholar

[18] S. Salamatian Hosseini, A. Nabavi-Kivi, M.R. Ayatollahi, M. Petru, Effect of nozzle diameter on tensile and fracture behavior of FDM-PLA samples, Procedia Struct. Integr. 61(2024)20-25.

DOI: 10.1016/j.prostr.2024.06.004

Google Scholar

[19] L. Marșavina, C. Vălean, M. Mărghitaș, et al., Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens, Eng. Fract. Mech. 274 (2022) 108766.

DOI: 10.1016/j.engfracmech.2022.108766

Google Scholar

[20] D. Rahmatabadi, I. Ghasemi, M. Baniassadi, K. Abrinia, M. Baghani, 3D printing of PLA-TPU with different component ratios: fracture toughness, mechanical properties and morphology, J. Mater. Res. Technol. 21 (2022) 3970-3981.

DOI: 10.1016/j.jmrt.2022.11.024

Google Scholar

[21] N. Vidakis, M. Petousis, N. Mountakis, V. Papadakis, C. Charou, V. Rousos, P. Bastas, Glass fillers in three different forms used as reinforcement agents of polylactic acid in material extrusion additive manufacturing, Appl. Sci. 13(11) (2023) 6471.

DOI: 10.3390/app13116471

Google Scholar

[22] C. Vălean, I.N. Orbulov, A. Kemény, E. Linul, Low-cycle compression-compression fatigue behavior of MEX-printed PLA parts, Eng. Fail. Anal. 161 (2024) 108335.

DOI: 10.1016/j.engfailanal.2024.108335

Google Scholar

[23] ASTM D5045-14, Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, 2022. 5acXjzUk

DOI: 10.1520/d5045-14r22

Google Scholar