Preparation and Luminescence of Novel O-Phenanthroline-Acyl Amino Acid Rare Earth Praseodymium Complexes

Article Preview

Abstract:

The o-phenanthroline-acyl-amino acid praseodymium complex (Pr [CH3(CH2)4CO NHC H(CH3)COO]3ꞏphen) has been synthesized by an in-solution chemical reaction method using H(hex-ala) and 1,10-phenanthroline (phen) as ligands with a view to obtaining rare-earth organic complexes with good optical properties. The molecular structure of the praseodymium complex was determined using CHN elemental analysis, 13C NMR testing, and FT-IR spectroscopic testing. We also perform wide-angle and small-angle XRD diffraction wave analysis, polarization microscopy observation, light absorption testing, fluorescence spectral analysis, fluorescence lifetime analysis, and fluorescence variable temperature spectral analysis. The results indicate that the introduction of the auxiliary ligand phen results in a periodic short-range ordered structure and better crystallinity of Pr (hex-ala)3ꞏphen, which exhibits strong optical anisotropy in the molten state. Good light absorption in the UV-visible region (200 nm - 420 nm), switching from ligand luminescence to a rare earth centered luminescence mechanism, and photoluminescence shifting from the blue to the green region. High fluorescence intensity in the visible and near-infrared regions, good fluorescence lifetime (0.76 µs), and good thermal stability in the range of 25 °C - 200 °C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1167)

Pages:

71-80

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. K. Han, G. Naren, A. Bohnuud, et al. Study on the structural and photophysical properties of N-acyl amino acid europium complexes. Arabian Journal of Chemistry, 16(2023)10524-6.

DOI: 10.1016/j.arabjc.2023.105246

Google Scholar

[2] C. Archana, L. Ritu. Preparation, characterization and luminescence behavior of some samarium complexes. Rare Metals, 40(2021)2618.

DOI: 10.1007/s12598-020-01552-9

Google Scholar

[3] G. Naren, T. Bao, J. Ning, et al. Optical properties and aggregation behavior of environmentally friendly Lanthanum (III) acyl-alaninnate complexes. Arabian Journal of Chemistry, 13(2020)5864.

DOI: 10.1016/j.arabjc.2020.04.023

Google Scholar

[4] V. P. Shtefanets, G. V. Shilov, E. I. Kunitsyna, et al. Rare-Earth Metal (Pr(III), Tb(III), Ho(III), and Er(III)) Complexes with 2-Mercaptopyridine-N-oxide: Synthesis, Structures, and Properties. Russian Journal of Coordination Chemistry, 48(2022)436-451.

DOI: 10.1134/s1070328422070089

Google Scholar

[5] K. Katarzyna, O. Grażyna. Synthesis, crystal structure and optical properties of new (Nd, Sm) and other lanthanide (Ln = Pr) complexes with 1,10-phenanthroline and thiocyanate. Polyhedron, 146 (2018)145-153.

DOI: 10.1016/j.poly.2018.03.004

Google Scholar

[6] M. H. Cui, L. P. Yang, F. C. Li, et al. Multifunctional DyIII Enantiomeric Pairs Showing Enhanced Photoluminescences and Third-Harmonic Generation Responses through the Coordination Role of Homochiral Tridentate N,N,N-Pincer Ligands. Inorganic chemistry, 60(2021)13366-13375.

DOI: 10.1021/acs.inorgchem.1c01682.s001

Google Scholar

[7] Y. Zhang, G. Naren, T. Bao, et al. Synthesis, Characterization, and DFT studies of Praseodymium (III) Octanoyl-DL-aminocarb oxylate Complexes. Chemistry Select, 7(2022) e202104100.

DOI: 10.1002/slct.202104100

Google Scholar

[8] V. Gowda, B. Sarma, S. Öberg, et al. Structure Elucidation of an Yttrium Diethyldithiocarbamato-Phenanthroline Complex by X-ray Crystallography, Solid-State NMR, and ab-initio Quantum Chem-ical Calculations. European Journal of Inorganic Chemistry, 2016(2016)3278-3291.

DOI: 10.1002/ejic.201600059

Google Scholar

[9] X. Liu, Y. Zhang, X. M. Pan, et al. Rare earth cerium-phenanthroline binary complex as a new corrosion inhibitor for carbon steel in acidic medium. Research on Chemical Intermediates, 49 (2022)1235-1257.

DOI: 10.1007/s11164-022-04918-z

Google Scholar

[10] Y. j. Chen, S. N. Wu, Z. F. Xing, et al. Synthesis, structural characterization and luminescent properties of a novel europium ternary complex Eu(2-A-4-CBA)3 phen. Journal of Alloys and Com-pounds, 649(2015)699-703.

DOI: 10.1016/j.jallcom.2015.03.137

Google Scholar

[11] Y. H. Xiao, Z. P. Deng, Z. B. Zhu, et al. Rare earth metal-organic complexes constructed from hydroxyl and carboxyl modified arenesulfonate: syntheses, structure evolutions, and ultraviolet, visi-ble and near-infrared luminescence. Dalton transactions, 46(2017) 16493-16504.

DOI: 10.1039/c7dt03254d

Google Scholar

[12] Z. Ahmed, K Iftikhar. Sensitization of visible and NIR emitting lanthanide(III) ions in noncent-rosym-metric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole. The journal of physical chemistry, 117(2013)11183-11201.

DOI: 10.1021/jp403668j

Google Scholar

[13] K. Zheng, Z. Q. Liu, Y. Huang, et al. Highly luminescent Ln-MOFs based on 1,3-adamanta-nediacetic acid as bifunctional sensor. Sensors & Actuators: B. Chemical, 257(2018) 705-713.

DOI: 10.1016/j.snb.2017.11.009

Google Scholar

[14] M.T. Metlin, S.A. Ambrozevich, D.A. Metlina, et al. Luminescence of pyrazolic 1, 3-diketone Pr3+ complex with 1, 10-phenanthroline. Journal of Luminescence, 188(2017)365.

DOI: 10.1016/j.jlumin.2017.04.058

Google Scholar

[15] X. G. Mu, Y. h. Zhang, L. N. Wang, et al. A family of coordination polymers derived from a flexible dicarboxylic acid and auxiliary N-donor ligands: solvothermal synthesis, crystal structure and dye adsorption properties. Transition Metal Chemistry, 46(2021)219-230.

DOI: 10.1007/s11243-020-00438-0

Google Scholar