Surface Properties of the Mechanical Exfoliated MoS2 few Layers

Article Preview

Abstract:

In this work, an investigation of the mechanically exfoliated MoS2 under the influence of heat treatment was carried out. Optical and atomic force microscopy techniques were applied to determine the number of layers. Resonant Raman investigation was performed, which clearly showed systematic layer-dependent spectral features. The surface morphology of MoS2 was investigated with the STM. Atomic-resolution images of MoS2 is were obtained. Three types of atomic defects were identified as substitutions of donor and acceptor atoms in the Mo atomic layer below the topmost sulfur layer.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1167)

Pages:

97-104

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306 (2004), 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] K. S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451–10453.

DOI: 10.1073/pnas.0502848102

Google Scholar

[3] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7 (2013), 2898-2926.

DOI: 10.1021/nn400280c

Google Scholar

[4] A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures, Nature. 499 (2013) 419-425.

DOI: 10.1038/nature12385

Google Scholar

[5] Li. Yangang, K. Guizhi,  J. Zhongjie, Y. Lin and D. Ruihuan, Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides, Mater. Res. Express 9 (2022) 122001.

DOI: 10.1088/2053-1591/aca6c6

Google Scholar

[6] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010) 1271–1275

DOI: 10.1021/nl903868w

Google Scholar

[7] R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, A. Castellanos-Gomez, Recent Progress in the Assembly of Nanodevices and van der Waals Heterostructures by Deterministic Placement of 2D Materials, Chem. Soc. Rev. 47 (2018), 53−68.

DOI: 10.1039/c7cs00556c

Google Scholar

[8] K.S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D Materials and van der Waals Heterostructures, Science 353 (2016), 9439.

DOI: 10.1126/science.aac9439

Google Scholar

[9] N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías and A. Mccreary, CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage, 2D Mater. 1 (2014), 011004.

DOI: 10.1088/2053-1583/1/1/011004

Google Scholar

[10] V. Klee, E. Preciado, D. Barroso, A. E. Nguyen and F. Leonard, Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1-x)Se2x alloy devices, Nano Lett. 15 (2015) 2612–2619.

DOI: 10.1021/acs.nanolett.5b00190

Google Scholar

[11] A. Jalouli, M. Kilinc, A. Marga, M. Bian, T. Thomay, A. Petrou and H. Zeng, Transition metal dichalcogenide graded alloy monolayers by chemical vapor deposition and comparison to 2D Ising model, J. Chem. Phys. 156 (2022), 134704.

DOI: 10.1063/5.0081929

Google Scholar

[12] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero and F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3 (2011), 20–30.

DOI: 10.1039/c0nr00323a

Google Scholar

[13] N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas, CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1 (2014), 011004.

DOI: 10.1088/2053-1583/1/1/011004

Google Scholar

[14] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo and A. C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15 (2012), 564–589.

DOI: 10.1016/s1369-7021(13)70014-2

Google Scholar

[15] J. R. Brent, N. Savjani, P. O'Brien, Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater. Sci. 89 (2017), 411–478.

DOI: 10.1016/j.pmatsci.2017.06.002

Google Scholar

[16] J. Khan, C. M. Nolen, D Teweldebrhan, D. Wickramaratne, R. K. Lake and A. A. Balandin, Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels, Appl. Phys. Lett. 100 (2012), 043109.

DOI: 10.1063/1.3679679

Google Scholar

[17] Q. Zhang, L. Mei, X. Cao, Y. Tang and Z. Zeng, Intercalation and exfoliation chemistries of transition metal dichalcogenides, J. Mater. Chem. A 8 (2012), 15417–15444.

DOI: 10.1039/d0ta03727c

Google Scholar

[18] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, ACS Nano 4 (2010), 2695–2700.

DOI: 10.1021/nn1003937

Google Scholar

[19] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier and D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Adv. Funct. Mater. 22 (2012), 1385.

DOI: 10.1002/adfm.201102111

Google Scholar

[20] F. Zahid, L. Liu, Y. Zhu, J. Wang, H. Guo, A generic tight-binding model for monolayer, bilayer and bulk MoS2, AIP Adv. 3 (2013), 052111.

DOI: 10.1063/1.4804936

Google Scholar

[21] A. A. Koós, P. Vancsó, M. Szendrő, G. Dobrik, D. A. Silva, Z. I. Popov, P. B. Sorokin, L. Henrard, C. Hwang, L. P. Biró, L. Tapasztó. Influence of Native Defects on the Electronic and Magnetic Properties of CVD Grown MoSe2 Single Layers, J. Phys. Chem. C, 123 (2019), 24855-24864

DOI: 10.1021/acs.jpcc.9b05921

Google Scholar

[22] Ch. Zhang, C. Wang, C, F. Yang, J. K. Huang, L. J. Li, W. Yao, W. Ji, Ch. K. Shih, Engineering Point-Defect States in Monolayer WSe2, ACS Nano 13 (2019), 1595−1602.

DOI: 10.1021/acsnano.8b07595

Google Scholar

[23] G. Munkhsaikhan, D. Otgonbayar, B. Odontuya, R. Buyanjargal and D. Naranchimeg, Scanning Tunneling Microscopy Observation of WSe2 Surface, Solid State Phenom. 323 (2021), 140-145.

DOI: 10.4028/www.scientific.net/ssp.323.140

Google Scholar

[24] R. Addou, R. M. Wallace, Surface Analysis of WSe2 Crystals: Spatial and Electronic Variability, ACS Appl. Mater. Inter. 8 (2016), 26400−26406.

DOI: 10.1021/acsami.6b08847

Google Scholar

[25] Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction, Small, (2018), 14, 1704150.

DOI: 10.1002/smll.201704150

Google Scholar

[26] Guguchia, Z.; Kerelsky, A.; Edelberg, D.; Banerjee, S.; von Rohr, F.; Scullion, D.; Augustin, M.; Scully, M.; Rhodes, D. A.; Shermadini, Z.; Luetkens, H.; Shengelaya, A.; Baines, C.; Morenzoni, E.; Amato, A.; Hone, J. C.; Khasanov, R.; Billinge, S. J. L.; Santos, E.; Pasupathy, A. N.; Uemura, Y. J. Magnetism in Semiconducting Molybdenum Dichalcogenides, Sci. Adv, (2018), 4, 3672.

DOI: 10.1126/sciadv.aat3672

Google Scholar