[1]
Witt, A. A., Gorelik, G. A., Vibrations of an elastic pendulum as an example of vibrations of two parametrically coupled linear systems, Journal of Technical Physics, Nrs. 2-3, pp.294-307, (1933).
Google Scholar
[2]
Nayfeh, A.H., Balachandran, B., Modal interactions in dynamical and structural systems, Applied Mechanics Reviews, Vol. 42, N 11, Part 2, pp. S175-S201, (1989).
DOI: 10.1115/1.3152389
Google Scholar
[3]
Nayfeh, A.H., Nonlinear Interaction: Analytical, Computational, and Experimental Methods, Wiley, New York, (2000).
Google Scholar
[4]
Rossikhin, Yu. A., Shitikova, M. V., Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges, Journal of Engineering Mechanics, Vol. 124, pp.1029-1036, (1998).
DOI: 10.1061/(asce)0733-9399(1998)124:9(1029)
Google Scholar
[5]
Rossikhin, Yu. A., Shitikova, M. V., Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modelled by a fractional derivative, Journal of Engineering Mathematics, Vol. 37, pp.343-362, (2000).
Google Scholar
[6]
Volmir, A. S., Nonlinear Dynamics of Plates and Shells (in Russian), Nauka, Moscow, (1972).
Google Scholar
[7]
Nayfeh, A., Perturbation Methods, Wiley, New York, (1973).
Google Scholar
[8]
Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications (in Russian), Nauka i Tekhnika, Minsk, 1988 (Engl. transl. by Gordon and Breach Science Publ. ).
Google Scholar
[9]
Rossikhin, Yu. A., Shitikova, M. V., Analysis of nonlinear free vibrations of suspension bridges, Journal of Sound and Vibration, Vol. 186, pp.369-393, 1995. This article was processed using the LATEX macro package with TTP style.
DOI: 10.1006/jsvi.1995.0457
Google Scholar