Orthogonal Function Techniques for the Identification of Nonlinear Mechanical Systems


Article Preview



Materials Science Forum (Volumes 440-441)

Edited by:

M.P. Cartmell




R.P. Pacheco and V. Steffen Jr., "Orthogonal Function Techniques for the Identification of Nonlinear Mechanical Systems", Materials Science Forum, Vols. 440-441, pp. 59-68, 2003

Online since:

November 2003




[1] S. F. Masri and T. K. Caughey: A Nonparametric Identification Technique for Nonlinear Dynamic Problems. Journal of Applied Mechanics - Transactions of the ASME 46 (1979), 433-447.

DOI: https://doi.org/10.1115/1.3424568

[2] Q. Chen and G. R. Tomlinson: Parametric Identification of Systems with Dry Friction and Nonlinear Stiffness Using a Time Series Model. Journal of Vibration and Acoustics, ASME 118, (1996), pp.252-263.

DOI: https://doi.org/10.1115/1.2889656

[3] R. Ghanem and F. Romeo: A Wavelet-Based Approach for Model and Parameter Identification of Nonlinear Systems. International Journal of Nonlinear Mechanics, vol. 36, (2001), pp.835-859.

DOI: https://doi.org/10.1016/s0020-7462(00)00050-0

[4] A. Chatterjee and N. Vyas: Nonlinear Parameter Estimation Using Volterra Series with Multi-Tone Excitation. XX IMAC Proceedings of the 20th International Modal Analysis Conference, Los AngelesCA, (2002), pp.880-885.

[5] R. P. Pacheco and V. Steffen Jr.: Using Orthogonal Functions for Identification and Sensitivity Analysis of Mechanical Systems. Journal of Vibration and Control, 8, (2002), pp.993-1021.

[6] R. P. Pacheco and V. Steffen Jr.: Nonlinear Identification Of Mechanical Systems Using Orthogonal Functions. Proceedings (in CD) of the 4th International Conference On Inverse Problems In Engineering: Theory And Practice, Angra dos Reis, Rio de Janeiro, Brazil, May (2002).