Magnetically Driven Selective Grain Growth in Locally Deformed Zn Single Crystals

Article Preview

Abstract:

In magnetically anisotropic materials a driving force for grain boundary migration can be induced by an external magnetic ¯eld. It is experimentally shown that annealing of locally deformed Zn single crystals in a suitably directed high magnetic ¯eld results in a growth of new individual grains. Velocities of some solitary moving grain boundaries were measured and their absolute mobilities were estimated at a single temperature. Results are discussed in terms of preferential grain orientation and boundary character.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

763-770

Citation:

Online since:

October 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Gottstein, H.C. Murmann, G. Renner, C. Simpson and K. L¨ucke, Proc ICOTOM 5, ed. G. Gottstein and K. L¨ucke, Springer, (1978).

Google Scholar

[2] M.S. Masteller and C.L. Bauer, Recrystallization of Metallic Materials ed. F. Haessner, Dr. Riederer Verlag, (1978).

Google Scholar

[3] H.C. Murmann, PhD thesis, Aachen University, (1976).

Google Scholar

[4] W.W. Mullins, Acta Met., Vol. 4, pp.421-432, (1956).

Google Scholar

[5] M.J. Fraser, R.E. Gold and W.W. Mullins, Acta Met., Vol. 9, pp.960-961, (1961).

Google Scholar

[6] D.A. Molodov, G. Gottstein, F. Heringhaus, L.S. Shvindlerman, Scr. Mat., Vol. 8, pp.1207-1213, (1997).

Google Scholar

[7] P.J. Konijnenberg, D.A. Molodov, G. Gottstein and L.S. Shvindlerman, NHMFL Annual Research Review, pp.266-267, (2000).

Google Scholar

[8] A.D. Sheik-Ali, D.A. Molodov, G. Garmestani, Scr. Mat., Vol. 48, pp.483-488, (2003).

Google Scholar

[9] A.D. Sheik-Ali, D.A. Molodov, G. Garmestani, Scr. Mat., Vol. 46, pp.857-862, (2002).

Google Scholar

[10] J.F. Nye, Physical Properties of Crystals, Oxford University Press, (1985).

Google Scholar

[11] http: /mathworld. wolfram. com.

Google Scholar

[12] F.C. Frank, Met. Trans. A, Vol. 19A, pp.403-408, (1988).

Google Scholar

[13] A. Morawiec, D.P. Field, Phil. Mag. A, Vol. 73(4), 1113-1130, (1996).

Google Scholar

[14] A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, Oxford, (1995).

Google Scholar

[15] A. Morawiec, J. Appl. Cryst., Vol. 28, pp.289-293, (1995).

Google Scholar

[16] A. Morawiec, J. Appl. Cryst., Vol. 29, pp.164-169, (1996).

Google Scholar

[17] R. Klar, PhD thesis, Aachen University, (1966).

Google Scholar

[18] G. Gottstein and L.S. Shvindlerman, Grain Boundary Motion in Metals, CRC Press, (1999).

Google Scholar

[19] S. Hag`ege and G. Nouet, Scr. Metall., Vol. 19, pp.11-16, (1985).

Google Scholar

[20] H. Grimmer and D.H. Warrington, Acta Cryst., Vol. A43, pp.232-243, (1987).

Google Scholar

[21] H. Grimmer, Acta Cryst., Vol. A45, pp.320-325, 1989. This article was processed using the LATEX macro package with TTP style.

Google Scholar