Influence of Particle Mechanisms on Kinetics of Grain Growth in a P/M Superalloy

Article Preview

Abstract:

The current literature reports the quantitative analysis of the kinetics of grain growth influenced by second-phase particle mechanisms for a powder metallurgy nickel-base superalloy: APK-6. Annealing treatments in the superalloy are shown to involve coarsening/dissolution of γ’ particles, and these particles mechanisms are shown to influence the kinetics of grain growth. The grain-growth exponent, n, is computed, and the γ’-solvus temperature of the superalloy is determined to lie between 220 and 270 oC. The kinetic data is interpreted to establish dependence of γ’ particles coarsening/dissolution mechanisms, grain size, γ’-solvus temperature, and annealing time and temperature on the rates of grain growth in the superalloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

985-990

Citation:

Online since:

October 2004

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kobayashi and Y. Kashikura. Mater. Sc & Eng A, Vol. 358, (2003), p.1.

Google Scholar

[2] A.C.C. Reis, L. Kestens and Y. Houbaert. Proc 22nd RisФ International Symp. on Mat. Sci. Denmark (2001) p.383.

Google Scholar

[3] M.A. Otooni, R.W. Armstrong, N.J. Grant and K. Ishizaki, Editors. Mater. Research Soc. Symp. Proc., Vol. 363 (1995) p.123.

Google Scholar

[4] S.S. Sahay, C.P. Malhotra and A.M. Kolkhede. Acta Mater., Vol. 51 (2003) p.340.

Google Scholar

[5] C. Slama and M. Abdellaoui. Journal of Alloys and Compounds, Vol. 306 (2000) p.277.

Google Scholar

[6] S.B. Lee, D.Y. Yoon and M.F. Henry. Acta Mater., Vol. 48 (2000) p.3071.

Google Scholar

[7] J. Mizera, J.W. Wyrzykowski and K.J. Kurzydowski. Scripta Metall., Vol. 19 (1985) p.17.

Google Scholar

[8] Z. Huda, Ph. D Thesis, Brunel Univerity of West London, UK, (1991) p.98.

Google Scholar

[9] T. Gladman. Proc. 1st RisФ International Symp. on Metallurgy and Mater. Scie. (ed. Hansen), Denmark (1980) p.183.

Google Scholar

[10] T. Gladman and D. Dulie. Metal Science, 8, (1974) p.167.

Google Scholar

[11] Q. Yu and S.K. Esche. Modeling Simul. in Mater. Scie. Eng., 11 (2003) p.860.

Google Scholar

[12] E. Kozeschnik, V. Pletenev, N. Zolotorevsky and B. Buchmayr. Metall. Mater. Trans, 30A (1999) p.1663.

Google Scholar

[13] F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing henomenon, Pergamon, Elsevier Science Ltd, Oxforn, UK (1966) p.281.

Google Scholar

[14] C.S. Smith (quoting Zener). Trans AIME, 175, (1948) p.47.

Google Scholar

[15] T. Gladman. Proc. Royal Society London, A294 (1966) p.298.

Google Scholar

[16] R.D. Doherty, Mater. Sci., 16, (1982) p.1.

Google Scholar

[17] O. Hunderi, E. Nes and N. Ryum, Acta Metall. , 37, (1989) p.831.

Google Scholar

[18] S.P. Ringer, W.B. Li and K.E. Easterling, Acta Metall., 32 (1984) p.793.

Google Scholar

[19] S.P. Ringer, R.P. Kuziak and K.E. Easterling, Mater. Sci. & Tech, 7, (1991) p.193.

Google Scholar

[20] Z. Huda. J. of Mat. Eng. & Perf. Vol. 4(1) (1995) p.48.

Google Scholar

[21] S.W.K. Shaw. Tech Publ. No. P-BL-460, INCO Engineered Inc, UK, (1987) p.4.

Google Scholar

[22] Z. Huda and B. Ralph. Prak Metallogr., 27, (1990) p.64.

Google Scholar

[23] Z. Huda. Proc. 3rd International Symp. on Adv. Materials, Pakistan, (1993) p.391.

Google Scholar

[24] R.A. Higgins, Engineering Metallurgy (Part 1); Edward Arnold, London (1983) p.97.

Google Scholar

[25] M. Hillert. Acta Metall. 13, (1965) p.277.

Google Scholar

[26] C.S. Pande and E. Dantsker. Acta Metall. Mater., Vol. 42 (1994) p.2899.

Google Scholar

[27] H. Gleiter. Acta Mater. 48 (2000) p.7.

Google Scholar