Tensile and Bending Behavior of Melt Growth Al2O3/YAG Composite at Ultra High Temperatures (1773-2023K)

Article Preview

Abstract:

The deformation and fracture behavior at 1773-2023K of the unidirectionally solidified eutectic Al2O3/YAG (Yttrium-Aluminum Garnet with the composition of Y3Al5O13) ceramic composite was investigated. The stress-stain curve and strength of unnotched and notched specimens, measured by bending and tensile tests, showed that (a) both unnotched and notched specimens fractured in a brittle manner at low temperatures and at high displacement speeds, but in a ductile manner at high temperatures and at low displacement speeds, and (b) the notched strength increased, reaching maximum, and decreased with increasing temperature and decreasing displacement speed. The increase in the notched strength with increasing temperature and decreasing displacement speed up to the maximum value was accounted for by the increase in plastic zone size ahead of the notch, and the decrease with further increasing temperature and decreasing displacement speed by the loss of the stress carrying capacity of the yielded ligament, based on the finite element analysis.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

1091-1096

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Waku, H. Otsubo, N. Nakagawa and Y. Kohtoku: J. Mater. Sci. Vol. 31 (1996), p.4663.

Google Scholar

[2] Waku, N. Nakagawa, H. Otsubo, Y. Ohsora and Y. Kohtoku: J. Japan Inst. Metals, Vo. 59 (1995), p.71.

Google Scholar

[3] Y. Waku, N. Nakagawa, T. Wakamoto, H. Otsubo, K. Shimizu and Y. Kohtoku: Processing and Fabrication of Advanced Materials IV, eds. T. S. Srivatsan & J. J. Moore, The Minerals, Metals and Materials Society, Warrendale, PA, (1996), p.323.

Google Scholar

[4] H. Yoshida, K. Shimura, S. Suginohara, Y. Ikuhara, T. Sakuma, N. Nakagawa and Y. Waku: Key Engng Mater. Vol. 171-174 (2000), p.855.

DOI: 10.4028/www.scientific.net/kem.171-174.855

Google Scholar

[5] S. Ochiai, T. Ueda, L. Sato, M. Hojo, Y. Waku, N. Nakagawa, S. Sakata, A. Mitani and T. Takahashi: Compos Sci Technol. Vo. 61 (2001), p.2117.

DOI: 10.1016/s0266-3538(01)00159-2

Google Scholar

[6] Y. Waku, N. Nakagawa, T. Wakamoto, H. Otsubo, K. Shimizu and Y. Kohtoku: J. Mater. Sci., Vol. 33 (1998), p.1217.

Google Scholar

[7] Y. Waku, N. Nakagawa, H. Otsubo, K. Shimizu and Y. Kohtoku: Nature, Vol. 389 (1997), p.49.

Google Scholar

[8] Japan Society for Industrial Standard. Method to Estimate Fracture Toughness of Fine Ceramics at High Temperatures, JIS R 1617, (1994) (in Japanese).

Google Scholar

[9] S. Ochiai, T. Ueda, K. Sato, M. Hojo, Y. Waku, S. Sakata, A. Mitani, T. Takahashi and N. Nakagawa : Mater Sci Res Int Special Technical Publication-2, Mater. Sci. Res. Int., Kyoto, (2001), p.281.

Google Scholar

[10] R. Waynant and M. Ediger, Electro-optics Handbook. Mcgraw-Hill Inc. New York, (1994), p.11. 13.

Google Scholar

[11] R. W. Davidge, Mechanical Behavior of Ceramics. Cambridge University Press, (1979), p.64.

Google Scholar

[12] W. R. Cannon and T. Lagdon, J Mater Sci., Vol. 18 (1983), p.1.

Google Scholar