High-Temperature Strength of Directionally Solidified Al2O3/YAG/ZrO2 Eutectic Composite

Article Preview

Abstract:

A2O3/YAG/ZrO2 eutectic Melt-Growth-Composites (MGCs) were unidirectionally solidified by the modified-pulling-down method (MPD) and the Bridgman type method, in which a crucible was brought down at different speeds. The microstructures and crystallographic textures were studied by field emission scanning electron microscopy (FE-SEM) and electron backscattered pattern (EBSP) method. The high-temperature strength was investigated by compression tests. All MGC rods show strong preferred growing orientation, although the structural size of eutectic microstructure among MGC rods was different. The high-temperature strength of MGC rods is dependent on orientation, compression temperature and strain rate. The high-temperature strength of MGC rods is controlled by the anisotropic strength of constituent Al2O3, as well as the structural size of eutectic microstructure.

You might also be interested in these eBooks

Info:

[1] A. Nitta: J. JSME 99 (1996) 251-256.

Google Scholar

[2] T.A. Parthasarathy, T.Y. Mah, L.E. Matson: J. Am. Ceram. Soc. 76 (1993) 29-32.

Google Scholar

[3] Y. Waku, N. Nakagawa, H. Ohtsubo, Y. Ohsora, Y. Koutoku: J. Jpn. Inst. Meter 59 (1995) 71-78.

Google Scholar

[4] Y. Waku, H. Ohtsubo, N. Nakagawa, Y. Koutoku: J. Mater. Sci. 31 (1996) 4663-4670.

Google Scholar

[5] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, Y. Kohtoku: Nature 389 (1997) 49-52.

DOI: 10.1038/37937

Google Scholar

[6] Y. Waku, S. Sakata, A. Mitani and K. Shimizu: Mater. Res. Innov. 15 (2001) 94-100.

Google Scholar

[7] Y. Waku, S. Sakata, A. Mitani, K. Shimizu and M. Hasebe: J. Mat. Sci. 37 (2002) 2975-2982.

DOI: 10.1023/a:1016073115264

Google Scholar

[8] B.M. Epelbaum, A. Yoshikawa, K. Shimamura, T. Fukuda, K. Suzuki, Y. Waku: J. Crystal Growth 198/199 (1999) 471-475.

DOI: 10.1016/s0022-0248(98)01052-5

Google Scholar

[9] J.H. Lee, A. Yoshikawa, T. Fukuda, Y. Waku: J. Crystal Growth 231 (2001) 115-120.

Google Scholar

[10] C.S. Frazer, E.C. Dickey, A. Sayir: J. Crystal Growth 233 (2001) 187-195.

Google Scholar

[11] Y. Murayama, J.H. Lee, A. Yoshikawa, S. Hanada and T. Fukuda: Mater. Trans. 45 (2004) 303-306.

Google Scholar

[12] H. Yoshida, A. Nakamura, T. Sakuma, N. Nakagawa, Y. Waku: Scripta Mater. 45 (2001) 957-963.

Google Scholar

[13] Y. Murayama, S. Hanada and Y. Waku: Mater. Trans. 44 (2003) 1690-1693.

Google Scholar

[14] S.M. Lakiza and L.M. Lopato: J. Am. Cerami. Soc. 80 (1997) 893-902.

Google Scholar

[15] J.H. Lee: Doctoral Thesis, Tohoku University (2001).

Google Scholar

[16] D.M. Kotchick, R.E. Tressler: J. Am. Ceram. Soc. 63 (1980) 429-434.

Google Scholar

[17] G.S. Corman: Ceram. Eng. Sci. Proc. 12 (1991) 1745-1766.

Google Scholar

[18] D.J. Gooch, G.W. Groves: J. Mat. Sci. 8 (1973) 1238-1246.

Google Scholar

[19] G.S. Corman: J. Mat. Sci. 12 (1993) 379-382.

Google Scholar

[20] T.A. Parthasarathy and R.S. Hay: Acta mater. 44 (1996) 4663-4676.

Google Scholar

[21] U. Messerschmidt, D. Baither, B. Baufeld and M. Bartsch: Mater. Sci. Eng. A233 (1997) 61-74.

Google Scholar

[22] K.P.D. Lagerlof, A.H. Heuer, J. Castaing, J.P. Riviere, T.E. Mitchell: J. Am. Ceram. Soc. 77 (1994) 385-397 Caption.

Google Scholar