Tensile Properties and Creep Behavior of SiC-Based Fibers under Various Oxygen Partial Pressures

Article Preview

Abstract:

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

1333-1336

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Takeda, A. Urano, J. Sakamoto, Y. Imai, J. Nucl. Mater., 258-363(1998), p.1594.

Google Scholar

[2] T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, Nature, 391 (1998), p.773.

Google Scholar

[3] T. Shimoo, H. Takeuchi and K. Okamura, J. Am. Ceram. Soc., 84 [3] (2001), p.566.

Google Scholar

[4] G. He, T. Shibayama, H. Takahashi, J. Mater. Sci., 35 (2000), p.1153.

Google Scholar

[5] T. Shimoo, K. Okamura, M. Ito, M. Takeda, J. Mater, Sci., 35 (2000), p.3733.

Google Scholar

[6] B. Schneider, A. Guette, R. Naslain, M. Cataldi, A. Costecalde, J. Mater. Sci., 33 (1998), p.535.

DOI: 10.1023/a:1004313022769

Google Scholar

[7] C.H. Henager Jr, C.A. Lewinsohn and R. H. Jones, Acta Mater., 49 (2001), p.3727.

Google Scholar

[8] G.E. Yougnblood, C. Lewinsohn, R.H. Jones and A. Kohyama, J. Nucl. Mater. 289 (2001), p.1.

Google Scholar

[9] J. Sha, T. Nozawa, J. Park, Y. Katoh, A. Kohyama, to be published in J. Nucl. Mater.

Google Scholar

[10] G.N. Morscher and J.A. Dicarlo, J. Am. Ceram. Soc. 75 [1] (1992), p.136.

Google Scholar

[11] T. Shimoo, Y. Morisada, K. Okamura, J. Mater. Sci, 37 (2002), p.4361.

Google Scholar

[12] T. Shibayama Y. Yoshida, Y. Yano and H. Takahashi, CREST-International Symposium on SiC/SiC composite Materials R&D and Its Application to Advanced Energy system, May 20-22, 2002, Kyoto, Japan.

Google Scholar

[13] R. Bodet, X. Bourrat, J. Lamon, R. Naslain, J. Mater. Sci., 30 (1995), p.661.

Google Scholar

[14] T. Shimoo, K. Okamura, M. Ito, M. Takeda, J. Mater. Sci., 35 (2000), pp.3733-0000.

Google Scholar

10. 10. 10. 1.

Google Scholar

20. 20. 20. 2.

Google Scholar

30. 30. 30. 3.

Google Scholar

40. 40. 40. 4.

Google Scholar

50. 50. 50. 5.

Google Scholar

60. 60. 60. 6.

Google Scholar

70. 70. 70. 7.

Google Scholar

80. 80. 80. 8.

Google Scholar

90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar Reciprocal temperature/1000(K-1) Stress relaxation parameter m 1773 1673 1573 1473 1273 Test temperature/K HNL TySA 0000.

DOI: 10.1515/9783112467169-039

Google Scholar

10. 10. 10. 1.

Google Scholar

20. 20. 20. 2.

Google Scholar

30. 30. 30. 3.

Google Scholar

40. 40. 40. 4.

Google Scholar

50. 50. 50. 5.

Google Scholar

60. 60. 60. 6.

Google Scholar

70. 70. 70. 7.

Google Scholar

80. 80. 80. 8.

Google Scholar

90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar 0000.

DOI: 10.1515/9783112467169-039

Google Scholar

10. 10. 10. 1.

Google Scholar

20. 20. 20. 2.

Google Scholar

30. 30. 30. 3.

Google Scholar

40. 40. 40. 4.

Google Scholar

50. 50. 50. 5.

Google Scholar

60. 60. 60. 6.

Google Scholar

70. 70. 70. 7.

Google Scholar

80. 80. 80. 8.

Google Scholar

90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar Reciprocal temperature/1000(K-1) Stress relaxation parameter m 1773 1673 1573 1473 1273 Test temperature/K HNL TySA Fig. 3. The 1 hour BSR creep resistance of SiC-based fibers under various oxygen partial pressures.

DOI: 10.1515/9783112467169-039

Google Scholar