Tensile Properties and Creep Behavior of SiC-Based Fibers under Various Oxygen Partial Pressures

Abstract:

Article Preview

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

1333-1336

Citation:

J. J. Sha et al., "Tensile Properties and Creep Behavior of SiC-Based Fibers under Various Oxygen Partial Pressures", Materials Science Forum, Vols. 475-479, pp. 1333-1336, 2005

Online since:

January 2005

Export:

Price:

$38.00

[1] M. Takeda, A. Urano, J. Sakamoto, Y. Imai, J. Nucl. Mater., 258-363(1998), p.1594.

[2] T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, Nature, 391 (1998), p.773.

[3] T. Shimoo, H. Takeuchi and K. Okamura, J. Am. Ceram. Soc., 84 [3] (2001), p.566.

[4] G. He, T. Shibayama, H. Takahashi, J. Mater. Sci., 35 (2000), p.1153.

[5] T. Shimoo, K. Okamura, M. Ito, M. Takeda, J. Mater, Sci., 35 (2000), p.3733.

[6] B. Schneider, A. Guette, R. Naslain, M. Cataldi, A. Costecalde, J. Mater. Sci., 33 (1998), p.535.

[7] C.H. Henager Jr, C.A. Lewinsohn and R. H. Jones, Acta Mater., 49 (2001), p.3727.

[8] G.E. Yougnblood, C. Lewinsohn, R.H. Jones and A. Kohyama, J. Nucl. Mater. 289 (2001), p.1.

[9] J. Sha, T. Nozawa, J. Park, Y. Katoh, A. Kohyama, to be published in J. Nucl. Mater.

[10] G.N. Morscher and J.A. Dicarlo, J. Am. Ceram. Soc. 75 [1] (1992), p.136.

[11] T. Shimoo, Y. Morisada, K. Okamura, J. Mater. Sci, 37 (2002), p.4361.

[12] T. Shibayama Y. Yoshida, Y. Yano and H. Takahashi, CREST-International Symposium on SiC/SiC composite Materials R&D and Its Application to Advanced Energy system, May 20-22, 2002, Kyoto, Japan.

[13] R. Bodet, X. Bourrat, J. Lamon, R. Naslain, J. Mater. Sci., 30 (1995), p.661.

[14] T. Shimoo, K. Okamura, M. Ito, M. Takeda, J. Mater. Sci., 35 (2000), pp.3733-0000.

10. 10. 10. 1.

20. 20. 20. 2.

30. 30. 30. 3.

40. 40. 40. 4.

50. 50. 50. 5.

60. 60. 60. 6.

70. 70. 70. 7.

80. 80. 80. 8.

90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar Reciprocal temperature/1000(K-1) Stress relaxation parameter m 1773 1673 1573 1473 1273 Test temperature/K HNL TySA 0000.

DOI: https://doi.org/10.1515/9783110971286.2.1514

10. 10. 10. 1.

20. 20. 20. 2.

30. 30. 30. 3.

40. 40. 40. 4.

50. 50. 50. 5.

60. 60. 60. 6.

70. 70. 70. 7.

80. 80. 80. 8.

90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar 0000.

DOI: https://doi.org/10.1515/9783110971286.2.1514

10. 10. 10. 1.

20. 20. 20. 2.

30. 30. 30. 3.

40. 40. 40. 4.

50. 50. 50. 5.

60. 60. 60. 6.

70. 70. 70. 7.

80. 80. 80. 8.

90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar Reciprocal temperature/1000(K-1) Stress relaxation parameter m 1773 1673 1573 1473 1273 Test temperature/K HNL TySA Fig. 3. The 1 hour BSR creep resistance of SiC-based fibers under various oxygen partial pressures.

DOI: https://doi.org/10.1515/9783110971286.2.1514

Fetching data from Crossref.
This may take some time to load.