[1]
M. Takeda, A. Urano, J. Sakamoto, Y. Imai, J. Nucl. Mater., 258-363(1998), p.1594.
Google Scholar
[2]
T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, Nature, 391 (1998), p.773.
Google Scholar
[3]
T. Shimoo, H. Takeuchi and K. Okamura, J. Am. Ceram. Soc., 84 [3] (2001), p.566.
Google Scholar
[4]
G. He, T. Shibayama, H. Takahashi, J. Mater. Sci., 35 (2000), p.1153.
Google Scholar
[5]
T. Shimoo, K. Okamura, M. Ito, M. Takeda, J. Mater, Sci., 35 (2000), p.3733.
Google Scholar
[6]
B. Schneider, A. Guette, R. Naslain, M. Cataldi, A. Costecalde, J. Mater. Sci., 33 (1998), p.535.
DOI: 10.1023/a:1004313022769
Google Scholar
[7]
C.H. Henager Jr, C.A. Lewinsohn and R. H. Jones, Acta Mater., 49 (2001), p.3727.
Google Scholar
[8]
G.E. Yougnblood, C. Lewinsohn, R.H. Jones and A. Kohyama, J. Nucl. Mater. 289 (2001), p.1.
Google Scholar
[9]
J. Sha, T. Nozawa, J. Park, Y. Katoh, A. Kohyama, to be published in J. Nucl. Mater.
Google Scholar
[10]
G.N. Morscher and J.A. Dicarlo, J. Am. Ceram. Soc. 75 [1] (1992), p.136.
Google Scholar
[11]
T. Shimoo, Y. Morisada, K. Okamura, J. Mater. Sci, 37 (2002), p.4361.
Google Scholar
[12]
T. Shibayama Y. Yoshida, Y. Yano and H. Takahashi, CREST-International Symposium on SiC/SiC composite Materials R&D and Its Application to Advanced Energy system, May 20-22, 2002, Kyoto, Japan.
Google Scholar
[13]
R. Bodet, X. Bourrat, J. Lamon, R. Naslain, J. Mater. Sci., 30 (1995), p.661.
Google Scholar
[14]
T. Shimoo, K. Okamura, M. Ito, M. Takeda, J. Mater. Sci., 35 (2000), pp.3733-0000.
Google Scholar
10. 10. 10. 1.
Google Scholar
20. 20. 20. 2.
Google Scholar
30. 30. 30. 3.
Google Scholar
40. 40. 40. 4.
Google Scholar
50. 50. 50. 5.
Google Scholar
60. 60. 60. 6.
Google Scholar
70. 70. 70. 7.
Google Scholar
80. 80. 80. 8.
Google Scholar
90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar Reciprocal temperature/1000(K-1) Stress relaxation parameter m 1773 1673 1573 1473 1273 Test temperature/K HNL TySA 0000.
DOI: 10.1515/9783112467169-039
Google Scholar
10. 10. 10. 1.
Google Scholar
20. 20. 20. 2.
Google Scholar
30. 30. 30. 3.
Google Scholar
40. 40. 40. 4.
Google Scholar
50. 50. 50. 5.
Google Scholar
60. 60. 60. 6.
Google Scholar
70. 70. 70. 7.
Google Scholar
80. 80. 80. 8.
Google Scholar
90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar 0000.
DOI: 10.1515/9783112467169-039
Google Scholar
10. 10. 10. 1.
Google Scholar
20. 20. 20. 2.
Google Scholar
30. 30. 30. 3.
Google Scholar
40. 40. 40. 4.
Google Scholar
50. 50. 50. 5.
Google Scholar
60. 60. 60. 6.
Google Scholar
70. 70. 70. 7.
Google Scholar
80. 80. 80. 8.
Google Scholar
90. 90. 90. 9 11110. 50. 50. 50. 5 0. 60. 60. 60. 6 0. 70. 70. 70. 7 0. 80. 80. 80. 8 Air HP-Ar UHP-Ar Reciprocal temperature/1000(K-1) Stress relaxation parameter m 1773 1673 1573 1473 1273 Test temperature/K HNL TySA Fig. 3. The 1 hour BSR creep resistance of SiC-based fibers under various oxygen partial pressures.
DOI: 10.1515/9783112467169-039
Google Scholar