Defects and Ion-Solid Interactions in Silicon Carbide

Article Preview

Abstract:

Atomic-level simulations are used to determine defect production, cascade-overlap effects, and defect migration energies in SiC. Energetic C and Si collision cascades primarily produce single interstitials, mono-vacancies, antisite defects, and small defect clusters, while amorphous clusters are produced within 25% of Au cascades. Cascade overlap results in defect stimulated cluster growth that drives the amorphization process. The good agreement of disordering behavior and changes in volume and elastic modulus obtained computationally and experimentally provides atomic-level interpretation of experimentally observed features. Simulations indicate that close-pair recombination activation energies range from 0.24 to 0.38 eV, and long-range migration energies for interstitials and vacancies are determined.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

1345-1350

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. W. Palmour, J. A. Edmond, H. S. Kong and C. H. Carter, Jr.: Physica B 185 (1993), p.461.

Google Scholar

[2] J. B. Casady and R. W. Johnson: Solid-State Electron. 39 (1996), p.1409.

Google Scholar

[3] W. Wesch: Nucl. Instrum. Meth. B 116 (1996), p.305.

Google Scholar

[4] W. J. Choyke and G. Pensl: MRS Bulletin 22 (1997), p.25.

Google Scholar

[5] J. A. Cooper Jr., M. R. Melloch, J. M. Woodall, J. Spitz, K. J. Schoen and J. P. Henning: Mater. Sci. Forum Vol. 264-268 (1998).

DOI: 10.4028/www.scientific.net/msf.264-268.895

Google Scholar

[6] M. A. Capano and R. J. Trew: MRS Bull. 22 (1997), p.19.

Google Scholar

[7] L. Giancarli, J. P. Bonal, A. Caso, G. Le Morois, N. B. Moorley and J. F. Salavy: Fusion Eng. Des. 41 (1998), p.165.

Google Scholar

[8] B. G. Kim, Y. Choi, J. W. Lee, D. S. Sohn and G. M. Kim: J. Nucl. Mater. 281 (2000), p.163.

Google Scholar

[9] F. Gao and D. J. Bacon: Philos. Mag. A 71 (1995), p.43.

Google Scholar

[10] F. Gao and W. J. Weber: J. Appl. Phys. 89 (2001), p.4275.

Google Scholar

[11] T. Diaz de la Rubia and M. W. Guinan: J. Nucl. Mater. 174 (1990), p.151.

Google Scholar

[12] R. Devanathan, W. J. Weber and T. Diaz de la Rubia: Nucl. Instrum. Meth. B 141 (1998), p.118.

Google Scholar

[13] F. Gao and W. J. Weber: Phys. Rev. B 63 (2000), p.054101.

Google Scholar

[14] R. Devanathan, W. J. Weber and F. Gao: J. Appl. Phys. 90 (2001), p.2303.

Google Scholar

[15] K. Nordlund, N. Runenberg and D. Sundholm: Nucl. Instrum. Meth. B 132 (1997), p.45.

Google Scholar

[16] F. Gao and W. J. Weber: Phys. Rev. B 66 (2002), p.024106.

Google Scholar

[17] M. Parrinello and A. Rahman: J. Appl. Phys. 52 (1981), p.7182.

Google Scholar

[18] Yu. N. Osetsky, A. G. Mikhin and A. Serra: Philos. Mag. A 72 (1995), p.361.

Google Scholar

[19] F. Gao and W. J. Weber: Nucl. Instrum. Meth. B 191 (2002), p.504.

Google Scholar

[20] M. R. Sorensen, K. W. Jacobsen and H. Jónsson: Phys. Rev. Lett. 77 (1996), p.5067.

Google Scholar

[21] W. Jiang and W. J. Weber: Phys. Rev. B 64 (2001), p.125206.

Google Scholar

[22] Y. Zhang, W.J. Weber, W. Jiang, A. Hallén and G. Possnert: J. Appl. Phys. 91 (2002), p.6388.

Google Scholar

[23] J.F. Ziegler: http: /www. SRIM. org.

Google Scholar

[24] R. Devanathan and W. J. Weber: J. Nucl. Mater. 278 (2000), p.258.

Google Scholar

[25] F. Gao and W. J. Weber: Appl. Phys. Lett. 82 (2003), p.913.

Google Scholar

[26] W. J. Weber, F. Gao, R. Devanathan and W. Jiang: Nucl. Instrum. Meth. B 218 (2004), p.68.

Google Scholar

[27] W.J. Weber, F. Gao, R. Devanathan, W. Jiang and C.M. Wang: Nucl. Instrum. Meth. B 216 (2004), p.25.

Google Scholar

[28] F. Gao and W. J. Weber: J. Mater. Res. 18 (2003), p.1877.

Google Scholar

[29] W. J. Weber, F. Gao, W. Jiang, and Y. Zhang: Nucl. Instrum. Meth. B 206 (2003), p.1.

Google Scholar

[30] L. L. Snead and J. C. Hay: J. Nucl. Mater. 273 (1999), p.213.

Google Scholar

[31] W. Jiang, C. M Wang, W. J. Weber, M. H. Englehard, and L. V. Saraf: J. Appl. Phys. 95 (2004), p.4687.

Google Scholar

[32] F. R. S. Hearmon: An Introduction to Applied Anisotropic Elasticity (Oxford University Press, London, 1961).

Google Scholar

[33] W. J. Weber, L. M. Wang, N. Yu and N. J. Hess: Mater. Sci. and Eng. A253 (1998), p.62.

Google Scholar

[34] F. Gao and W. J. Weber: J. Appl. Phys. 94 (2003), p.4348.

Google Scholar

[35] W. J. Weber, W. Jiang and S. Thevuthasan: Nucl. Instrum. Meth. B 175-177 (2001), p.26.

Google Scholar

[36] F. Gao, W. J. Weber, M. Posselt, and V. Belko: Phys. Rev. B 69 (2004), p.245205.

Google Scholar