Fabrication of W/Cu Functionally Gradient Materials by Multi-Billet Extrusion

Article Preview

Abstract:

W/Cu functionally gradient materials (FGMs) are fabricated by a novel process—multi-billet extrusion (MBE). Different W/Cu superfine powders made by mechanical alloying (MA) are used to improve the sinterability of W/Cu compacts. Good quality of three-layer W/Cu extrudes are obtained after confirming the extrusion parameters and the type and the content of binder during extrusion process. The green products are pressureless sintered at the temperature range of 1100-1300 oC for 1 h. W/Cu FGMs with relatively high density and high homogeneous microstructure are attained after sintering at 1200 oC for 1 h. The mechanisms for the enhance of sinterability and improvement of density of the mechanical alloyed (MAed) W-Cu powder products have been discussed. X-ray diffraction and scanning electron microscope are used to identify and observe phase constitution and microstructure, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

1511-1516

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Takahashi, Y. Itoh, M. Miyazaki, H. Takano and Y. Okuhata: In Proceedings of the 13th international Plansee seminar, edited by H. Bildstein and R. Eck (Metallwerk Plansee, Reutte 1993).

DOI: 10.1016/0010-4361(75)90403-6

Google Scholar

[2] A. Neubrand and J. Röde: Z. Metallkd Vol. 88 (1997), p.358.

Google Scholar

[3] R. Jedamzik, A. Neubrand and J. Rödel: J. Mater. Sci. Vol. 35 (2000), p.477.

Google Scholar

[4] M.M. Gasik: Computational Mater. Sci. Vol. 13 (1998), p.42.

Google Scholar

[5] G. Gusmano, A. Bianco, R. Polini, P. Magistris and G. Marcheselli: J. Mater. Sci. Vol. 36 (2001), p.901.

DOI: 10.1023/a:1004894900840

Google Scholar

[6] J.C. Kim, S.S. Ryu, H. Lee and I.H. Moon: Int. J. Powder. Metall. Vol. 35 (1999), p.47.

Google Scholar

[7] I.H. Moon, E.P. Kim, and G. Petzow: Powder Metall. Vol. 41 (1998), p.51.

Google Scholar

[8] J.C. Kim and I.H. Moon: Nanostructured Mater. Vol. 10 (1998), p.283.

Google Scholar

[9] C.S. Xiong, Y.H. Xiong, H. Zhu and T.F. Sun: Nanostructured Mater. Vol. 5 (1995), p.425.

Google Scholar

[10] S.S. Ryu , Y.D. Kim and I.H. Moon: J. Alloys and Compounds Vol. 335 (2002), p.233.

Google Scholar

[11] S.B. Li, J.X. Xie and Z.Y. Zhao: Mater. Sci. & Tech. Vol. 20(2004), (in pressing).

Google Scholar

[12] Z. Chen, K. Ikeda, T. Murakami and T. Takeda: J. Am. Ceram. Soc. Vol. 83 (2000), p.1081.

Google Scholar

[13] J.L. Johnson and R.M. German: Int. J. Powder. Metall. Vol. 30 (1994), p.91.

Google Scholar