[1]
Z. J. Geng and L. S. Haynes: Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms. IEEE Transactions on Control Systems Technology, Vol. 2, No. 1 (1994), pp.45-53.
DOI: 10.1109/87.273110
Google Scholar
[2]
D. K. Kleinke: Development of Magnetostrictive Sensors (Ph.D. Dissertation, Wayne State University, Detroit, Michigan, 1995).
Google Scholar
[3]
R. Venkataraman: Modeling and Adaptive Control of Magnetostrictive Actuators (Ph.D. Dissertation, University of Maryland, 1999).
Google Scholar
[4]
J. M. Nealis and R. C. Smith: An Adaptive Control Method for magnetostrictive Transducers with Hysteresis. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA (2001), pp.4260-4265.
DOI: 10.1109/cdc.2001.980862
Google Scholar
[5]
X. B. Tan: Control of Smart Actuators (Ph.D. Dissertation, University of Maryland, 2002).
Google Scholar
[6]
X. B. Tan and J. S. Baras: Modeling and Control of a Magnetostrictive Actuator. Proceedings of the 41th IEEE Conference on Decision and Control, Las Vegas, Nevada USA (2002), pp.866-872.
Google Scholar
[7]
X. B. Tan and J. S. Baras: A Robust Control Framework for Smart Actuators. Proceedings of the American Control Conference, Denver, Colorado (2003), pp.4645-4650.
Google Scholar
[8]
T. Ueno, J. H. Qiu and J. J. Tani: Magnetic Force Control Based on the Inverse Magnetostrictive Effect. IEEE Transactions on Magnetics, Vol. 40, No. 4 (2004), pp.1601-1605.
DOI: 10.1109/tmag.2004.826626
Google Scholar
[9]
L. Ljung: System Identification-Theory for the User (Beijing, PRC, Tsinghua University Press & Prentice-Hall PTR, 2002).
Google Scholar
[10]
M. X. Sun and B. J. Huang: Iterative Learning Control (Beijing, National Defence Industry Press, 1999).
Google Scholar