A Marco-Homogenous and Micro-Heterogeneous Model for Self-Propagating High Temperature Synthesis (SHS)

Abstract:

Article Preview

Recently research shows that heterogeneous model is needed to explain some complex combustion behaviors in SHS. However, more heterogeneous details be considered more difficulties will be faced. A micro-heterogeneous & macro-homogeneous model is proposed in this paper based on some previous works for this problem. Combustion compact is divided into lots of little units, which are composed of a large number of small particles. Considering a well-mixed situation, properties of every unit must be almost the same, so the compact can be treated as a macro-homogeneous system on the scale of these little units. During the combustion, every unit will have a heterogeneous properties and change; it can be gotten by a micro-heterogeneous model. Therefore, the micro-heterogeneous characters are connected with the Marco-combustion behaviors. Combustion dynamics of Ti-C-Fe system was studied to certify this model. Results show well consistency with experiments results.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

3259-3262

DOI:

10.4028/www.scientific.net/MSF.475-479.3259

Citation:

J. Y. Zhang et al., "A Marco-Homogenous and Micro-Heterogeneous Model for Self-Propagating High Temperature Synthesis (SHS)", Materials Science Forum, Vols. 475-479, pp. 3259-3262, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.