Femtosecond Laser Driven Shock Quenching of the Nanocrystalline High-Pressure Phase of Iron

Article Preview

Abstract:

Quenching of the nanocrystalline high-pressure e phase of iron, which has not been observed under a conventional shock compression, was attained using a femtosecond laser. A small quantity of the g phase of iron also existed. We found that the e phase was induced by the shock itself but not the g phase. The g phase was suggested to be induced as an intermediate structure between the a-e transition. The femtosecond laser driven shock may have the potential to quench high-pressure phases which has not been attained using conventional methods.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

3475-3478

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Ng, A. Forsman, and P. Celliers, Phys. Rev. E 51, 5208 (1995).

Google Scholar

[2] R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J. -P. Geindre, J. -C. Gautheier, A. Mysyrowicz, G. Grillon, and A. Antonetti, Phys. Rev. Lett. 77, 3359 (1996).

DOI: 10.1103/physrevlett.77.3359

Google Scholar

[3] K. T. Gahagan, D. S. Moore, D. J. Funk, R. L. Rabie, S. J. Buelow, and J. W. Nicholson, Phys. Rev. Lett. 85, 3205 (2000).

DOI: 10.1103/physrevlett.85.3205

Google Scholar

[4] R. J. Trainor and Y. T. Lee, Phys. Fluids 25, 1898 (1982).

Google Scholar

[5] R. Pakula and R. Sigel, Phys. Fluids 28, 232 (1985).

Google Scholar

[6] H. M. Strong, J. Geophys. Res. 64, 653 (1959).

Google Scholar

[7] F. P. Bundy, J. Appl. Phys. 36, 616 (1965).

Google Scholar

[8] R. Boehler, Geophys. Res. Lett. 13, 1153 (1986).

Google Scholar

[9] S. Minshall, Phys. Rev. 98, 271 (1955).

Google Scholar

[10] D. Bancroft, E. L. Peterson, and S. Minshall, J. Appl. Phys. 27, 291 (1956).

Google Scholar

[11] L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 45, 4872 (1974).

Google Scholar

[12] F. M. Wang and R. Ingalls, Phys. Rev. B 57, 5647 (1998).

Google Scholar

[13] J. P. Romain, M. Hallouin, M. Gerland, F. Cottet, and L. Marty, in Shock Waves in Condensed Matter - 1987, edited by S.C. Schmidt and N.C. Holmes (Elsevier Science Publishers B.V., Amsterdam, 1988), p.787.

Google Scholar

[14] B. L. Adams, S. I. Wright, and K. Kunze, Metall. Trans. A 24, 819 (1993).

Google Scholar

[15] O. Sakata, Y. Furukawa, S. Goto, T. Mochizuki, T. Uruga, K. Takeshita, H. Ohashi, T. Ohata, T. Matsushita, S. Takahashi, H. Tajiri, T. Ishikawa, M. Nakamura, M. Ito, K. Sumitani, T. Takahashi, T. Shimura, A. Saito, and M. Takahashi, Surf. Rev. Lett. 10, 543-547 (2003).

DOI: 10.1142/s0218625x03004809

Google Scholar

[16] Y. Sano and A. Abe, J. Appl. Phys. 89, 105 (2001).

Google Scholar

[17] T. Sano and Y. Sano, J. Appl. Phys. 90, 3764 (2001).

Google Scholar

[18] J. M. Brown and R. G. McQueen, J. Geophys. Res. 91, 7485 (1986).

Google Scholar

[19] J. M. Brown, J. N. Fritz, and R. S. Hixon, J. Appl. Phys. 88, 5496 (2000).

Google Scholar

[20] O. L. Anderson and D. G. Isaak, Am. Mineral. 85, 376 (2000).

Google Scholar

[21] W. G. Burgers, Physica 1, 561 (1934).

Google Scholar