Precipitation Behavior and Phase Stability of Intermetallic Phases in Fe-Cr-W-Co Ferritic Alloys

Abstract:

Article Preview

Precipitation behavior of intermetallic phases in ferrite matrix is investigated by transmission electron microscopy (TEM) in Fe-10Cr-1.4W-4.5Co (at%) alloys with and without 0.3at%Si. It is intended to provide basic information for the alloy design of ferritic heat resistant alloys strengthened by intermetallic compounds. In the alloy containing Si, icosahedral quasicrytalline phase (I-phase) is found to precipitate during aging at 873K. It is confirmed that selected area diffraction (SAD) patterns of the precipitates exhibit two-, three- and five-fold symmetry and have diffraction spots in the positions related to the golden section. In the Si-free alloy, the R-phase precipitates instead of I-phase at 873K, and the Laves phase precipitates in both alloys during aging at higher temperature, 973K. The Laves phase formed at 973K transforms to the I-phase in the Si-added alloy but to the R-phase in the Si-free alloy during subsequent aging at 873K. The factors in controlling the phase stability of I-phase, R-phase and Laves phase precipitates in Fe-based alloys are discussed by the atomic size ratio and electron concentration factor (e/a).

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

845-848

DOI:

10.4028/www.scientific.net/MSF.475-479.845

Citation:

K. Yamamoto et al., "Precipitation Behavior and Phase Stability of Intermetallic Phases in Fe-Cr-W-Co Ferritic Alloys", Materials Science Forum, Vols. 475-479, pp. 845-848, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.