Electrochemical Study of Hydrogen Electrode Reaction Kinetics on LmNi3.55Co0.75Mn0.4Al0.3 Alloy Electrode

Article Preview

Abstract:

The exchange current density and the peak current density of the hydrogen electrode reaction on LmNi3.55Co0.75Mn0.4Al0.3 alloy electrode in an aqueous 1M KOH solution, at low hydrogen contents (<0.1 H/M) and elevated temperatures (42-60°C), were studied using potentiostatic polarization techniques. Both measured quantities increased linearly with the increase in hydrogen content in the alloy. On the basis of the difference between the activation energy of the charge transfer and the hydrogen diffusion, it was concluded that the charge transfer reaction represented the rate-determining step of the hydrogen electrode reaction under applied experimental conditions. The decrease of each of these two activation energies with increasing hydrogen content was evidenced, which indicated the existence of other processes occurring in the electrode bulk accompanying the hydrogen diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-210

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. G. Willems and K. H. J. Buschow: J. Less-Common Met. Vol. 129 (1987), p.13.

Google Scholar

[2] T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Oguro and H. Ishikawa: J. Electrochem. Soc. Vol. 137 (1990), p.795.

DOI: 10.1149/1.2086557

Google Scholar

[3] P.H.L. Notten, M. Ouwerkerk, A. Ledovskikh, H. Senoh and C. Iwakura: J. Alloys Compd. Vol. 356-357 (2003), p.759.

DOI: 10.1016/s0925-8388(03)00085-9

Google Scholar

[4] C.S. Wang, X.H. Wang, Y.Q. Lei, C.P. Chen and Q.D. Wang: Int. J. Hydrogen Energy Vol. 21 (1996), p.471.

Google Scholar

[5] H. Pan, J. Ma, C. Wang, S. Chen, X. Wang, C. Chen and Q. Wang: J. Alloys Comp. Vol. 293- 295 (1999), p.648.

Google Scholar

[6] Y. Liu, H. Pan, M. Gao, Y. Zhu and Y. Lei: J. Alloys Comp. Vol. 365 (2004), p.246.

Google Scholar

[7] Y. Fukumoto, M. Miyamoto, M. Matsuoka and C. Iwakura: Electrochim. Acta Vol. 40 (1995), p.845.

Google Scholar

[8] H. Inoue, M. Miyamoto, M. Matsuoka, Y. Fukumoto and C. Iwakura: Electrochim. Acta Vol. 42 (1997), p.1087.

Google Scholar

[9] C. Iwakura, K. Fukuda, H. Senoh, H. Inoue, M. Matsuoka, Y. Yamamoto: Electrochim. Acta Vol. 43 (1998), p. (2041).

Google Scholar

[10] H. Senoh, Y. Hara, H. Inoue and C. Iwakura: Electrochim. Acta Vol. 46 (2001), p.967.

Google Scholar

[11] A. Züttel, V. Güther, A. Otto, M. Bärtsch, R. Kötz, D. Chartouni, Ch. Nützenadel and L. Schlapbach: J. Alloys Compd. Vol. 293-295 (1999), p.663.

DOI: 10.1016/s0925-8388(99)00427-2

Google Scholar

[12] F. Feng, X. Ping, Z. Zhou, M. Geng, J. Han and D.O. Nortwood: Int. J. Hydrogen Energy Vol. 23 (1998), p.599.

Google Scholar

[13] G. Wu, N. Li, C.S. Dai and D.R. Zhou: Mater. Chem. Phys. Vol. 83 (2004), p.307.

Google Scholar

[14] Q.M. Yang, M. Ciureanu, D.H. Ryan and J.O. Ström-Olsen: J. Electrochem. Soc. Vol. 141 (1994), p.2108.

Google Scholar

[15] Y. Zhu, H. Pan, M. Gao, Y. Liu and Q. Wang: J. Alloys Comp. Vol. 345 (2002), p.201.

Google Scholar

[16] T. Haraki, N. Inomata and H. Uchida: J. Alloys Comp. Vol. 293-295 (1999), p.407.

Google Scholar