Morphology and Capacitive Properties of [RuOxHy/Low Surface Area Carbon Black] Composite Materials Prepared by Sol Gel Procedure

Article Preview

Abstract:

The morphology and the capacitive properties of carbon supported hydrous ruthenium oxide (RuOxHy/C), prepared by impregnation of low-surface area carbon black VulcanÒ XC-72 R with solid phase of RuOxHy sol, were investigated by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The oxide sols of different ageing times, prepared by forced hydrolysis of RuCl3, were used for composite preparation. The prepared composites show considerably higher capacitance values in acid electrolyte if compared to carbon black support. Microscopic investigations show that the extent of impregnation and the composite surface appearance depend on ageing time. The composite capacitance increases with ageing time of oxide sol. A gradual decrease in capacitance of thermally untreated composite with charging/discharging cycles was registered, which appears to be related to the extent of impregnation, too. Electrochemical impedance spectroscopy measurements indicate an in-depth capacitance distribution through the composite layer. It was found that NafionÒ layer, used to ensure the adhesion of the composite layer to the current collector, influenced the composite impedance behavior, especially on the oxide-rich parts of the composite surface.

You might also be interested in these eBooks

Info:

[1] S. Trasatti and W. O'Grady in: H. Gerisher and C. W. Tobias (Eds. ), Advances in Electrochemistry and Electrochemical Engineering, Vol. 12 (Wiley, New York, USA 1981).

Google Scholar

[2] S. Trasatti in: A. Wieckowski (Ed. ), Interfacial Electrochemistry - Theory, Experiment and Applications, p.769 (Marcel Dekker Inc., New York, USA 1999).

Google Scholar

[3] B. Conway: Electrochemical Supercapacitors - Scientific Fundametals and Technological Applications (Plenum Publishers, New York, USA 1999).

Google Scholar

[4] S. Ardizzone, G. Fregonara and S. Trasatti: Electrochim. Acta Vol. 35 (1990), p.263.

Google Scholar

[5] W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami and Y. Takasu: Electrochim. Acta Vol. 49 (2004), p.313.

Google Scholar

[6] J. P. Zheng and T. R. Jow: J. Electrochem Soc. Vol. 142 (1995), p. L6.

Google Scholar

[7] T. Jow and J. Zheng: J. Electrochem Soc. Vol. 145 (1998), p.49.

Google Scholar

[8] D. McKeown, P. Hagans, L. Carette, A. Russell, K. Swider and D. Rolison: J. Phys. Chem. B Vol. 103 (1999), p.4825.

Google Scholar

[9] V. Panić, T. Vidaković, S. Gojković, A. Dekanski and B. Nikolić: Electrochim Acta Vol. 48 (2003), p.3805.

DOI: 10.1016/s0013-4686(03)00514-0

Google Scholar

[10] D. Evans, J. Zheng and S. Robertson on: 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices (Deerfield Beach, USA 2000).

Google Scholar

[11] M. Ramani, B. Haran, R. White and B. Popov: J. Electrochem. Soc. Vol. 148 (2001), p. A374.

Google Scholar

[12] V. Panić, A. Dekanski, S. Gojković, V. Mišković-Stanković and B. Nikolić: Mater. Sci. Forum Vols. 453-454 (2004), p.133.

DOI: 10.4028/www.scientific.net/msf.453-454.133

Google Scholar

[13] V. Panić, A. Dekanski, V. Mišković-Stanković, S. Milonjić and B. Nikolić: J. Serb. Chem. Soc. Vol. 68 (2003), p.979.

Google Scholar

[14] K. Kinoshita: Carbon - Electrochemical and Physicochemical Properties (John Wiley & Sons, New York, USA 1988).

Google Scholar

[15] Derek Johnson, ZView  Sofware, Copyright 1990-2002 Scribner Associates, Inc.

Google Scholar

[16] V. D. Jović and B. M. Jović: J. Electroanal. Chem. Vol. 541 (2003), p.1.

Google Scholar