Modelling of Recrystallisation Kinetics and Texture during the Thermo-Mechanical Processing of Aluminium Sheets

Article Preview

Abstract:

Computer-based alloy and process development requires integration of models for simulating the evolution of microstructure, microchemistry and crystallographic texture into process models of the thermo-mechanical production of Al sheet. The present paper focuses on recent developments in linking softening modules that simulate the progress of recovery and recrystallisation with the following texture changes to deformation and microchemistry models. The potential of such coupled simulations is illustrated by way of the thermo-mechanical processing of Al-Mg-Mn alloys. In particular, the progress of recrystallisation during coil cooling (“self-annealing”) as well as the texture differences between production on a reversible rolling mill and a high-speed tandem line are explored.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

555-566

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Hirsch, K. Karhausen and P. Wagner: Mater. Sci. Forum, Vols. 331-337 (2000), p.421.

Google Scholar

[2] K.F. Karhausen and R. Kopp: Aluminium Vol. 78 (2002), p, 880.

Google Scholar

[3] J. Hirsch, K.F. Karhausen and O. Engler: in Continuum Scale Simulation of Engineering Materials: Fundamentals, eds. D. Raabe, F. Roters, F. Barlat and L. -Q. Chen (Wiley-VCH Verlag, Berlin 2004), p.643.

DOI: 10.1002/3527603786

Google Scholar

[4] K. Marthinsen, S. Abtahi, K. Sjølstad, B. Holmedal, E. Nes, A. Johansen, J.A. Sæter, T. Furu, O. Engler, Z.J. Lok, J. Talamantes-Silva, C. Allen and C. Liu: Aluminium Vol. 80 (2004), p.729.

Google Scholar

[5] M. Goerdeler, M. Crumbach, P. Mukhopadhyay, G. Gottstein, L. Neumann and R. Kopp: Aluminium Vol. 80 (2004), p.666.

Google Scholar

[6] R.D. Doherty: Prog. Mater. Sci. Vol. 42 (1997), p.39.

Google Scholar

[7] A.D. Rollett: Prog. Mater. Sci. Vol. 42 (1997), p.79.

Google Scholar

[8] G. Gottstein and R. Sebald: J. Mater. Proc. Technol. Vol. 117 (2001), p.282.

Google Scholar

[9] U. Köhler and H.J. Bunge Textures and Microstr. Vol. 23 (1995), p.87.

Google Scholar

[10] R. Sebald and G. Gottstein: Acta Mater. Vol. 50 (2002), p.1587.

Google Scholar

[11] H.E. Vatne, T. Furu, R. Ørsund, and E. Nes: Acta Mater. Vol. 44 (1996), p.4463.

DOI: 10.1016/1359-6454(96)00078-x

Google Scholar

[12] H.E. Vatne, K. Marthinsen, R. Ørsund and E. Nes: Metall. Trans. Vol. 27A (1996), p.4133.

Google Scholar

[13] J.A. Sæter, B. Forbord, H.E. Vatne and E. Nes: in Proc. ICAA6, eds. T. Sato et al. (JILM, Japan 1998), p.113.

Google Scholar

[14] O. Engler: Textures and Microstr. Vol. 28 (1997), p.197.

Google Scholar

[15] O. Engler: Textures and Microstr. Vol. 32 (1999), p.197.

Google Scholar

[16] O. Engler and H.E. Vatne: JOM Vol. 50 (1998), No. 6, p.23. 12.

Google Scholar

[17] O. Engler and S. Kalz: Mater. Sci. Eng. Vol. A373 (2004), p.350.

Google Scholar

[18] J. Hirsch this conference (2005).

Google Scholar

[19] V. Randle and O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping (Gordon and Breach Sci. Publ., Amsterdam 2000).

DOI: 10.1201/9781482287479

Google Scholar

[20] I. Ansara, A.T. Dinsdale and M.H. Rand: Thermochemical Database for Light Metal Alloys (Final Report COST 507 V2, European Commission, Brussels 1998).

Google Scholar

[21] N. Saunders: J. Japanese Inst. Light Metals Vol. 51 (2001), p.141.

Google Scholar

[22] R. Becker and W. Döring: Ann. Phys. Vol. 32 (1938), p.128.

Google Scholar

[23] M. Schneider, G. Gottstein, L. Löchte and J. Hirsch: Mater. Sci. Forum Vols. 396-402 (2002), p.637.

Google Scholar

[24] G. Gottstein, M. Schneider and L. Löchte: in Proc. ICAA9, eds. J.F. Nie, A.J. Morton and B.C. Muddle (Inst. Mater. Eng. Australasia Ltd. 2004), p.1116.

Google Scholar

[25] J. Hirsch and K. Lücke: Acta Metall., Vol. 36 (1988), p.2883.

Google Scholar

[26] U.F. Kocks, C.N. Tomé and H.R. Wenk: Texture and Anisotropy: Preferred Orientations and their Effect on Materials Properties (Cambridge Univ. Press, Cambridge UK 1998).

Google Scholar

[27] P. Van Houtte, L. Delannay and I. Samajdar: Textures and Microstr. Vol. 31 (1999), p.109.

Google Scholar

[28] M. Crumbach, G. Pomana, P. Wagner and G. Gottstein: in Proc. 1st Joint Int. Conf. on Recrystallisation and Grain Growth, eds. G. Gottstein and D.A. Molodov (Springer, Berlin 2001), p.1053.

Google Scholar

[29] O. Engler: Adv. Eng. Mater. Vol. 4 (2002), p.181.

Google Scholar

[30] O. Engler: Modell. Simul. Mater. Sci. Eng. Vol. 11 (2003), p.863.

Google Scholar

[31] O. Engler, M. Crumbach and S. Li: Acta Mater. Vol. 53 (2005) in the press.

Google Scholar

[32] O. Engler: Mater. Sci. Technol. Vol. 12 (1996), p.859.

Google Scholar

[33] O. Engler, X.W. Kong and K. Lücke: Phil. Mag. Vol. A81 (2001), p.543.

Google Scholar

[34] E. Nes and W.B. Hutchinson: in Proc. 10th Risø Int. Symp. on Mater. Sci., eds. J.B. Bilde- Sørensen et al. (Risø Nat. Lab., Roskilde, Denmark 1989), p.233.

Google Scholar

[35] A. Duckham, O. Engler and R.D. Knutsen: Acta Mater. Vol. 50 (2002), p.2881.

Google Scholar

[36] M. Crumbach, G. Gottstein, L. Löchte, D. Piot, J. Driver, C.M. Allan and J.F. Savoie: Mater. Sci. Forum Vols. 396-402 (2002), p.357.

DOI: 10.4028/www.scientific.net/msf.396-402.357

Google Scholar