Orientation Fragmentation in Copper, Nickel and Aluminum: A Comparative Study of the Nucleation Process

Article Preview

Abstract:

An attempt to model the nucleation of fragment boundaries during cold plastic deformation of f.c.c. metals is presented. The paper focuses on intrinsic nucleation in the grain interior due to elementary processes on the dislocation level. Since orientation fragmentation seems to be linked to slip banding and the underlying mechanisms should be the same, the model is based on the elementary process of double cross-slip. Simulations were carried out for Cu, Ni and Al. Fragment boundary spacings and misorientations could be predicted in reasonable agreement with experiment for Cu. For Ni, comparable results were obtained, when a stacking fault energy at the lower end of the range of literature data was chosen. The resulting rate equation for the generation of partial disclinations as carriers of orientation fragmentation can be implemented into an earlier model for the coupled substructure and texture development during cold plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

945-954

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Rybin: Bolshie plasticheskie deformatsii i razrushenie metallov (Large Plastic Deformations and Fracture of Metals) (Metallurgiya, Russia 1986).

Google Scholar

[2] J.L. Raphanel, J. -H. Schmitt and B. Baudelet: Int. J. Plasticity Vol. 2 (1986), p.371 a) b) a) b).

Google Scholar

[3] D. Juul Jensen and N. Hansen: Acta metall. mater. Vol. 38 (1990), p.1369.

Google Scholar

[4] U.F. Kocks: J. Engng. Mater. Tech. (Trans. ASME) Vol. 98 (1976), p.76.

Google Scholar

[5] J. Gil Sevillano, P. Van Houtte and E. Aernoudt: Progr. Mater. Sci. Vol. 25 (1981), p.69.

Google Scholar

[6] N. Hansen and D.A. Hughes: phys. stat. sol. (b) Vol. 149 (1995), p.155.

Google Scholar

[7] B. Bay, N. Hansen, D.A. Hughes and D. Kuhlmann-Wilsdorf: Acta metall. mater. Vol. 40 (1992), p.205.

Google Scholar

[8] A.S. Argon and P. Haasen: Acta metall. mater. Vol. 41 (1993), p.3289.

Google Scholar

[9] D. Kuhlmann-Wilsdorf: Metall. Trans. A Vol. 16A (1985), p. (2091).

Google Scholar

[10] V.I. Vladimirov and A.E. Romanov: Sov. Phys. Sol. State Vol. 20 (1978), p.1795.

Google Scholar

[11] F.R.N. Nabarro and D. Kuhlmann-Wilsdorf: Scripta mater. Vol. 35 (1996), p.1331.

Google Scholar

[12] A. Seeger and M. Wilkens, in: Reinststoffprobleme, Bd. III: Realstruktur und Eigenschaften von Reinststoffen, ed.: E. Rexer (Akademie-Verlag, Germany 1968), p.29.

Google Scholar

[13] G. Saada: Acta metall. Vol. 27 (1979), p.921.

Google Scholar

[14] F.R.N. Nabarro: Theory of Crystal Dislocations (Clarendon Press, Great Britain 1967).

Google Scholar

[15] R. deWit: J. Res. Nat. Bur. Stand. (U.S. ) Vol. 77A (1973), p.49, p.359 and p.607.

Google Scholar

[16] A.E. Romanov and V.I. Vladimirov, in: Dislocations in Solids, vol. 9, ed.: F.R.N. Nabarro (North Holland, The Netherlands 1992), p.191.

Google Scholar

[17] M. Seefeldt, L. Delannay, B. Peeters, E. Aernoudt and P. Van Houtte: Acta mater. Vol. 49 (2001), p.2129.

DOI: 10.1016/s1359-6454(01)00126-4

Google Scholar

[18] V.V. Rybin, A.A. Zisman and N. Yu. Zolotorevsky, Acta metall. mater. Vol. 41 (1993), p.2211.

Google Scholar

[19] W. Pantleon and P. Klimanek, in: Proceedings of the 16 th Risø International Symposium on Materials Science, eds.: N. Hansen et al. (Risø National Laboratory, Denmark 1995), p.473.

Google Scholar

[20] H. Neuhäuser, in: Dislocations in Solids, vol. 6, ed.: F.R.N. Nabarro (North Holland, The Netherlands 1983), p.319.

Google Scholar

[21] H. Wiedersich: J. Appl. Phys. Vol. 33 (1962), p.854.

Google Scholar

[22] P. Hähner: Versetzungsdynamik propagierender plastischer Verformungsmoden (Ph.D. thesis, Stuttgart University, Germany 1992).

Google Scholar

[23] J. Bonneville and B. Escaig: Acta metall. Vol. 27 (1979), p.1477.

Google Scholar

[24] M. Seefeldt: J. Alloy. Compd. Vol. 378 (2004), p.102.

Google Scholar

[25] R. Berner and H. Kronmüller, in: Moderne Probleme der Metallphysik, Bd. I, ed. A. Seeger (Springer, Germany 1965), p.35.

DOI: 10.1007/978-3-642-87529-8_2

Google Scholar

[26] P.C.J. Gallagher: Metall. Trans. Vol. 1 (1970), p.2429.

Google Scholar

[27] T. Vegge: Mater. Sci. Engng. A Vol. 309 (2001), p.113.

Google Scholar

[28] S. Mader: Z. Physik Vol. 149 (1957) 73.

Google Scholar

[29] D. Kuhlmann-Wilsdorf and H. Wilsdorf: Acta metall. Vol. 1 (1953), p.394.

Google Scholar

[30] Y. Kawazaki: J. Phys. Soc. Jpn. Vol. 36 (1974), p.142.

Google Scholar

[31] H.M. Tensi, W. Borchers and H. Pless: Z. Metallkde. Vol. 63 (1972), p.184.

Google Scholar