Processing Path Model to Describe Texture Evolution during Mechanical Processing

Article Preview

Abstract:

Using a processing path model based on the conservation principle in the orientation space explicit solutions can be formed linking any final (desired) microstructure to a given initial state for polycrystalline materials. The model uses texture coefficients in spherical harmonics expansion to as materials descriptors to represent the texture state of polycrystalline materials. In this work, the effect of increasing the maximum number of texture coefficients used in the series expansion (represented by Lmax) on the prediction of texture and its accuracy is fully studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

977-982

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Adams B.L., Henrie A., Henrie B., Lyon M., Kalidindi S.R., Garmestani H., 2001. Microstructure-sensitive design of a compliant beam. J. Mech. Phys. Solids 49, 1639-1663.

DOI: 10.1016/s0022-5096(01)00016-3

Google Scholar

[2] Adams B.L. Lyon M., Henrie B., 2004. Microstructure by design: linear problems in elasticplastic design. Int. J. Plast. in press.

Google Scholar

[3] Bunge H.J., 1982. Texture analysis in materials science: mathematical methods. London: Butterworth & Co.

Google Scholar

[4] Li D.S., Garmestani H., Adams B.L., 2004a. A texture evolution model in cubic-orthotropic polycrystalline system. Int. J. Plast., accepted.

Google Scholar

[5] Li D.S., Garmestani H. S. Ahzi, 2004b. Processing path model for the texture evolution in hexagonal materials. J. Mech. Phys. submitted.

Google Scholar

[6] Li D.S., Garmestani H. and Schoenfeld S.E., 2003a. Evolution of crystal orientation distribution coefficients during plastic deformation. Scripta Materialia, 49, 867-872.

DOI: 10.1016/s1359-6462(03)00443-3

Google Scholar

[7] Bunge H.J., Esling C., 1984. Texture development by plastic deformation. Scripta Met. 18, 191-195.

DOI: 10.1016/0036-9748(84)90506-4

Google Scholar

[8] Bunge H.J., Kiewel, R., Reinert Th., Fritsche, L., 2000. Elastic properties of polycrystals - influence of texture and stereology. J. Mech. Phys. Solids 48, 29-66.

DOI: 10.1016/s0022-5096(99)00020-4

Google Scholar

[9] Klein H., Bunge H.J., 1991. Modeling deformation texture formation by orientation flowfields. Steel Research. 62, 548-559.

DOI: 10.1002/srin.199100449

Google Scholar

[10] Clement A., Coulomb P., 1979. Eulerian simulation of deformation textures. Scripta Met. 13, 899-901.

DOI: 10.1016/0036-9748(79)90183-2

Google Scholar

[11] Clement A., 1982. Prediction of deformation texture using a physical principle of conservation. Mater. Sci. Eng. 55, 203-210.

Google Scholar

[12] Kalidindi S.R., Bronkhorst C.A., Anand L., 1992a. Crystallographic texture evolution in bulk deformation processing of fcc metals. J. Mech. Phys. Solids 40, 537-569.

DOI: 10.1016/0022-5096(92)80003-9

Google Scholar

[13] Kalidindi S.R., 2001. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals. Int. J. Plast., 17, 837-860.

DOI: 10.1016/s0749-6419(00)00071-1

Google Scholar