Reaction Stress Model and Relaxation of Reaction Stress among the Grains during Tensile Deformation of fcc Metals

Article Preview

Abstract:

A reaction stress model is introduced in this paper and its applications for the crystallographic texture simulation are also discussed with the comparison to the classic Taylor type model and the self consistent model. This model took the external deformation stress tensor as an initial point, and the activation process of slip systems as well as the orientation evolutions was simulated step by step. Certain relaxation of reaction stress were introduced during tensile or drawing deformation, which predicts the tensile direction distribution along the orientation line between <111> and <100> in the inverse pole figure besides the <111> and <100> fiber texture. The simulation agrees with the common experimental observations. The model supplies a simple way to follow the deformation process in the main part of polycrystals, in which the effect of grain orientation and its interaction with the surrounding matrix are considered.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

995-1000

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. I. Taylor, J. Inst. Met., Vol. 62 (1938), p.307.

Google Scholar

[2] J. F. W. Bishop, R. Hill, Phil. Mag. Vol. 42 (1951), p.414.

Google Scholar

[3] J. Hirsch, K. Lücke, Acta metall. Vol. 36 (1988), p.2863.

Google Scholar

[4] J. W. Hutchinson, Proc. Roy. Soc. Lond. Vol. 348A (1976), p.101.

Google Scholar

[5] A. Molinari, G. R. Canova, S. Ahzi, Acta metall., Vol. 35 (1987), p.2983.

Google Scholar

[6] R. A. Lebesohn, C. N. Tome, Acta metall., Vol. 41 (1993), p.2611.

Google Scholar

[7] B. Clausen, T. Lorentzen, T. Leffers, Acta mater., Vol. 46 (1998), p.3087.

Google Scholar

[8] R. J. Asaro, A. Needleman, Acta metall., Vol. 33 (1985), p.923.

Google Scholar

[9] W. Mao, Y. Yu, Mat. Sci. & Eng., Vol. A367 (2004), p.277.

Google Scholar

[10] H. Ahlborn, Z. Metallkde., Vol. 56 (1965), p.205, p.411.

Google Scholar

[11] M. G. Stout, Met. Trans. Vol. 20A (1989), p.125.

Google Scholar

[12] S. Kim, C. H. Choi, D. N. Lee, Materials Science Forum, Vol. 408-412 (2002), p.913.

Google Scholar

[13] F. Heringhaus, D. Raabe, U. Hangen, G. Gottstein, Materials Science Forum, Vol. 157-162 (1994), p.709.

DOI: 10.4028/www.scientific.net/msf.157-162.709

Google Scholar

[14] N. Inakazu, Y. Kaneno, H. Inoue, Materials Science Forum, Vol. 157-162 (1994), p.715.

Google Scholar

[15] T. Lorentzen, T. Leffers, B. Clausen, In: Proc. 19th Risø Inter. Symp. Eds. J. V. Carstensen, T. Leffers, et al, 1998, Risø Nat. Lab., Roskilde, p.345.

Google Scholar

[16] W. Mao, Y. Yu, In: Proc. 25th Risø Inter. Symp. Eds. C. Gundlach, K. Haldrup, et al, 2004, Risø Nat. Lab., Roskilde, p.423.

Google Scholar