Contribution to the Understanding of Austenite Stability in a 12Cr-9Ni-4Mo Maraging Steel

Article Preview

Abstract:

Maraging steels show an excellent combination of high strength and ductility, which makes them very attractive in a large variety of potential applications. The present work is concerned with the main factors influencing the stability of metastable austenite in such a steel. At subzero temperatures a large variation in the isothermal transformation behaviour of austenite to martensite has been observed. Factors such as the austenite grain size and the interstitial content in solid solution are known to influence austenite stability and, therefore, the martensitic transformation. In this steel, the addition of titanium results in carbonitride precipitation. These precipitates play an indirect but important role in the stability of austenite by means of removing interstitials from the solid solution and by inhibiting an austenite grain growth. The combination of techniques such as X-ray diffraction, magnetisation measurements, three-dimensional neutron depolarisation, and internal friction measurements enables a complete characterisation of the transformation. A step towards understanding the factors responsible for the variation in the behaviour observed is the main contribution of this work.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

339-346

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Borgenstam and H. Hillert: Acta Mater. Vol. 45 (1997) p.651.

Google Scholar

[2] E. Nagy, V. Mertinger, F. Tranta and J. Solyom: Mater. Sci. Eng. A Vol. A378 (2004) p.308.

Google Scholar

[3] K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L.F. Zhang, H. Kikuchi, K. Ara, M. Sato: J. Mater. Sci. Vol. 39 ( 2004) p.85.

Google Scholar

[4] R.W.K. Honeycombe and H.K.D.H. Bhadeshia: Steels, Microstructure and Properties (Edward Arnold, 2 nd Edition, Great Britain, 1995) p.83.

Google Scholar

[5] S. Kajiwara: Acta Metall. Vol. 32 (1984) 407.

Google Scholar

[6] C.L. Magee: The nucleation of martensite, Phase Transformations (ASM, 1970) p.115.

Google Scholar

[7] G.B. Olson and M. Cohen: Metall. Trans. Vol. 6A (1975) p.791.

Google Scholar

[8] A.K. De, D. C. Murdock, M.C. Mataya, J.G. Speer and D.K. Matlock: Scripta Mater. Vol. 50 (2004) p.1445.

Google Scholar

[9] L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma and S. van der Zwaag: Mater. Sci. Eng. A Vol. A313 (2001) p.145.

Google Scholar

[10] S.G.E. Te Velthuis, N.H. van Dijk, M. TH. Rekveldt, J. Sietsma and S. van der Zwaag: Acta Mater. Vol. 48 (2000) p.1105.

DOI: 10.1016/s1359-6454(99)00414-0

Google Scholar

[11] L.J.G.W. van Wilderen, S.E. Offerman, N.H. van Dijk, M. Th. Rekveldt, J. Sietsma, S. van der Zwaag: Appl. Phys. A Vol. 74 (2002) p. S1052.

DOI: 10.1007/s003390201676

Google Scholar

[12] N.H. van Dijk, S.E. Offerman, J.C.P. Klaasse, J. Sietsma, S. van der Zwaag: J. Magn. And Mag. Mater., Vol. 268 (2004) p.40.

Google Scholar

[13] N.H. van ijk, L. Zhao, M. Th. Rekveldt, H. Fredrikze, O. Tgus, E. Brück, J. Sietsma and S. van der Zwaag: Physica B Vol. 350 (2004) p. e463.

DOI: 10.1016/j.physb.2004.03.121

Google Scholar

[14] M. Holmquist, J. -O Nilsson and A. Hultin Stigenberg: Scripta Metall. Mat. Vol. 33 (1995) 1367.

Google Scholar

[15] J. Strid and K.E. Easterling: Acta Metall. Vol. 33 (1985) p. (2057).

Google Scholar

[16] J. Snoek: Physica Vol. 6 (1939) p.591.

Google Scholar

[17] A.S. Nowick, B.S. Berry: Anelastic Relaxation in Crystalline solids (Academic Press, 1972).

Google Scholar

[18] R. Bagramov, D. Mari and W. Benoit: Phil. Mag. A Vol. 81 (2001) p.2797.

Google Scholar

[19] I.S. Golovin, J. -O Nilsson, G.V. Serzhantova, S.A. Golovin: J. of Alloys and Compounds Vol. 310 (2000) p.411.

Google Scholar

[20] J. Post, K. Datta and J. Huetink, AIP Conference proceedings Vol. 712 (2004) p.1670.

Google Scholar

[21] B.D. Cullity, S.R. Stock: Elements of X-ray diffraction, (Prentice Hall, 3 rd ed, NY, 2001) p.351.

Google Scholar

[22] Chester F. Jatczak: Retained Austenite and its measurement by X-ray diffraction (SAE Report SP-80/ 453/ S02. 50).

Google Scholar

[23] R.S. Tebble and D.J. Craik: Magnetic Materials (Wiley-Interscience, 1969).

Google Scholar

[24] S.G.E. Te Velthuis, N.H. van Dijk, M. Th. Rekveldt, J. Sietsma and S. van der Zwaag: Acta Mater. Vol. 48 (2000) p.1105.

DOI: 10.1016/s1359-6454(99)00414-0

Google Scholar

[25] R. Rosman, M. Rekveldt: J. Magn. Magn. Mat. Vol. 95 (1991) p.319.

Google Scholar

[26] C. Prioul: J. Phys., Vol. 46 (1985) p. C10.

Google Scholar

[27] Y. Liu: Acta Metall. Mater. Vol. 41 (1994) p.3277.

Google Scholar

[28] J. Post: PhD. Thesis (Technical University of Twente 2004).

Google Scholar

[29] G.J. Klems, R.E. Miner, F.A. Hultgren and R. Gibala: Metall. Trans. A Vol. 7 (1976) p.839.

Google Scholar