Factors Limiting the Achievable Ferrite Grain Refinement in Hot Worked Microalloyed Steels

Article Preview

Abstract:

Nb is added to C-Mn steels in order to use the solute drag and/or strain induced precipitation as a useful tool to condition the austenite in the hot rolling mill and produce during the subsequent cooling a refined ferrite grain size. The highest degree of refinement is obtained in conventional rolling mills by accumulating the deformation in austenite during the last passes, followed by early cooling in the run out table to produce a high density of nucleated ferrite grains. However, the maximum refinement is to a certain extent attenuated due to the ferrite grain coarsening taking place during the transformation. The present work analyses the different aspects limiting the final achievable ferrite grain refinement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

355-362

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Pickering: Physical metallurgy and design of steels, Applied Science Publishers Ltd, Barking, Essex, United Kingdom, (1978).

Google Scholar

[2] S.S. Hansen: Metall. Mater. Trans. A Vol. 11 (1980), p.387.

Google Scholar

[3] A.I. Fernández, P. Uranga, B. López and J.M. Rodriguez-Ibabe: ISIJ Intern. Vol. 40 (2000), p.893.

Google Scholar

[4] R. Bengoechea, B. López and I. Gutierrez: Metall. and Mater. Trans. Vol. 29 (1998), p.417.

Google Scholar

[5] E. Cotrina, A. Argüelles, R. Bengochea, B. López and I . Gutierrez: Proc. Int. Conf. Thermomechanical Processing of Steels (Institute of Metals, London, 2000), p.255.

Google Scholar

[6] E Cotrina, A-Iza-Media, B. López and I. Gutiérrez: Metall. Mater. Trans. A Vol. 35 (2003), p.93.

Google Scholar

[7] E. Novillo, D. Hernández , I. Gutiérrez and B. López: Mater. Sci. Eng. A Vol 385 (2004), p.83.

Google Scholar

[8] D.R. Barraclough, H.J. Whitaker, K.D. Nair and C.M. Sellars: J. Test. Eval. Vol. 1 (1973), p.220.

Google Scholar

[9] D.W. Suh, J.H. Kang, K.H. Oh and H.C. Lee: Scripta Mater. Vol. 46 (2002), p.375.

Google Scholar

[10] D. Hernández, M. Diaz-Fuentes, B. Lopez and J. M. Rodriguez-Ibabe: Mat. Sci. Forum Vol. 426-432 (2003), p.1151.

Google Scholar

[11] T. Kimura, F. Kawabata, K. Amano, A. Ohmori, M. Okatsu and K. Uchida: Proc. International Symposium on Steel for Fabricated Structures, (ASM 1999), p.165.

Google Scholar

[12] D. Hernández, B. López and J.M. Rodriguez-Ibabe: Proc. Microalloyed Steels 2002, R.I. Asfahani, R. L. Bodnar and M.J. Merwin (2002), p.64.

Google Scholar

[13] D. Jorge-Badiola, A. Iza-Mendia, I. Gutiérrez: Mater. Sci. Eng A, Available online, Jan. (2005).

Google Scholar

[14] F. Bai, P. Cizek, E.J. Palmiere and W.M. Rainforth: Mat. Sci. Forum Vol. 467-470 (2004), p.21.

Google Scholar

[15] D.A. Porter and K.E. Easterling: Phase transformations in metals and alloys, Chapman & Hall, London (1981), p.317.

Google Scholar

[16] A. F. Gourgues, H. M. Flower and T. C. Lindley: Mater. Sci. Technol. Vol. 16 (2000), p.26.

Google Scholar

[17] M. Díaz, A. Iza-Mendia and I. Gutiérrez: Metall. Mater. Trans. A Vol. 34 (2003), p.2505.

Google Scholar

[18] T. Furuhara and T. Maki: Mater. Trans. Vol. 33 (1992), p.734.

Google Scholar

[19] T. Furuhara, J.M. Howe and H.I. Aaronson: Acta Metall. Mater. Vol. 39 (1991), p.2873.

Google Scholar

[20] J.F. Nie, B.C. Muddle, T. Furuhara and H.I. Aaronson: Scr. Mater. Vol. 39 (1998), p.637.

Google Scholar

[21] K. Ameyama and T. Maki: Scr. Mater. Vol. 24 (1990), p.173.

Google Scholar

[22] J.C.M. Li: J. Appl. Phys. Vol. 33 (1962), p.2958.

Google Scholar

[23] R.D. Doherty and J.A. Szpunar: Acta Metall. Vol. 32 (1984), p.1789.

Google Scholar

[24] M. Lübbehusen and H. Mehrer: Acta Metal. Mater. Vol. 38 (1990), p.283.

Google Scholar