Vanadium Carbide Dissolution during Austenitisation of a Model Microalloyed FeCV Steel

Article Preview

Abstract:

High performance commercial micro alloyed steels contain elements such as vanadium, which leads to a fine dispersion of vanadium carbide precipitates. The precipitation state, in terms of volume fraction and size distribution, plays a significant role in final mechanical properties of the material. Different austenitisation heat treatments were performed on a model ternary alloy FeCV. Precipitation states were characterised combining different experimental techniques. TEM was used to identify the chemical composition of observed precipitates. ICP mass spectroscopy was performed to measure the volume fraction of precipitates. The size distribution was studied by SEM. Results are characteristic of a coarsening regime.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

695-702

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Béranger, G. Henry, G. Labbe and P. Soulignac: Les Aciers Spéciaux (Technique et Documantation, France 1997).

Google Scholar

[2] G. Fourlaris, A.J. Baker and G.D. Papadimitriou: Acta Metal. Mater. Vol. 43 (1995), p.3733.

Google Scholar

[3] J.R. Davis: Alloying: Understanding the Basics (ASM International, 2001).

Google Scholar

[4] M. Prikryl, A. Kroupa, G.C. Weatherly and S.V. Subramanian: Metallurgical and Materials Transactions Vol. 27A (1996), p.1149.

Google Scholar

[5] S.K. Mishra(Pathak), S. Das and S. Ranganathan: Mater. Sci. Eng. Vol. A323 (2002), p.285.

Google Scholar

[6] S. Yamasaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol. Vol. 19 (2003) p.1335. Time of treatment [min] 0 (FPS) 2 10 20 60 R [nm] 28 ± 1 29 ± 1 30 ± 1 29 ± 1 46 ± 2.

Google Scholar

[7] G.L. Dunlop and D.A. Porter: Scandinavian Journal of Metallurgy Vol. 6 (1977), p.19.

Google Scholar

[8] S.F. Medina: Journal Mater. Sci. Vol. 32 (1997), p.1487.

Google Scholar

[9] A.J. Craven and M.M. Clukie: Ultramicroscopy Vol. 28 (1989), p.330.

Google Scholar

[10] W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler and F. Hofer: Acta Mater. Vol. 50 (2002), p.735.

DOI: 10.1016/s1359-6454(01)00389-5

Google Scholar

[11] G. Ghosh and G.B. Olson: Acta Mater. Vol. 50 (2002), p. (2099).

Google Scholar

[12] A.J. Craven, K. He, L.A. Garvie and T.N. Baker: Acta Mater. Vol. 48 (2000), p.3857.

Google Scholar

[13] P. Warbichler, F. Hofer, P. Hofer and E. Letofsky: Micron Vol. 29, No. 1 (1998), p.63.

DOI: 10.1016/s0968-4328(97)00054-1

Google Scholar

[14] F. Hofer, P. Warbichler and W. Grogger: Ultramicroscopy Vol. 59 (1995), p.15.

Google Scholar

[15] J. Billingham, P.S. Bell and M.H. Lewis: Philosophical Magazine Vol. 25 (1972), p.661.

Google Scholar

[16] R. Kesri and S. Hamar-Thibault: Acta Metall. Vol. 36, No. 1 (1988), p.149.

Google Scholar

[17] R.G. Baker and J. Nutting: Precipitation Processes in Steels, ISI Spec. Rep. No. 64, London (1959), p.1.

Google Scholar

[18] Thermo-Calc Software using SSOL4 database, www. thermocalc. com.

Google Scholar