Discussion on the Rate Controlling Process of Coarsening of Niobium Carbonitrides in a Niobium Microalloyed Steel

Article Preview

Abstract:

Austenite grain growth in microalloyed steels is governed by the coarsening of fine precipitates present at grain boundaries below the grain coarsening temperature. Zener model is widely used in metals to describe the pinning effect of second phase particles precipitated in the matrix. In this work it has been discussed whether grain boundary or volume diffusion is the rate controlling process for the coarsening of the niobium carbonitrides. Calculations on austenite grain growth kinetics, obtained coupling Zener theory and both rate controlling processes of precipitate coarsening, have been compared against experimental austenite grain size results under nonisothermal heating conditions. In this sense, it has been concluded that the coarsening of niobium carbonitrides is mainly controlled by volume diffusion of Nb in austenite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

703-710

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.V. Atkinson: Acta Metall. Vol. 36 (1988) p.469.

Google Scholar

[2] N.T. Baker: Future Developments of Metals and Ceramics, edited by J.A. Charles, G.W. Greenwood and G.C. Smith (Institute of Materials, London 1992), p.75.

Google Scholar

[3] C. Zener, quoted by C. S. Smith: Trans. AIME Vol. 175 (1948) p.15.

Google Scholar

[4] M. Hillert: Acta Metall Vol. 13 (1965) p.227.

Google Scholar

[5] T. Gladman: Proceedings of the Royal Society Vol. 294A (1966) p.298.

Google Scholar

[6] N. A. Haroun and D. W. Budworth: J. Mater. Sci Vol. 3 (1968) p.326.

Google Scholar

[7] N. A. Haroun: J. Mater. Sci Vol. 15 (1980) p.2816.

Google Scholar

[8] P. Hellman and M. Hillert: Scand. J. Metall. Vol. 4 (1975) p.211.

Google Scholar

[9] N. Ryum, O. Hunderi and E. Nes: Scr. Metall Vol. 17 (1983) p.1281.

Google Scholar

[10] E. Nes, N. Ryum and O. Hunderi: Acta Metall Vol. 33 (1985) p.11.

Google Scholar

[11] P.R. Rios: Acta Metall. Vol. 35 (1987) p.2805.

Google Scholar

[12] Y. Ogino: Tetsu-to-Hagane Vol. 57 (1971) p.533.

Google Scholar

[13] Y. Liu and B. R. Patterson, Acta Mater Vol. 44 (1996) p.4327.

Google Scholar

[14] C. García de Andrés, M. J. Bartolomé, C. Capdevila, D. San Martín, F. G. Caballero, V. López: Mater. Charact. Vol. 46 (2001) p.389.

Google Scholar

[15] C. García de Andrés, F.G. Caballero, C. Capdevila, D. San Martín: Mater. Charact. Vol. 4 (2003) p.121.

Google Scholar

[16] F. C. Hull and W. J. Houk: J. Met. April (1953) p.565.

Google Scholar

[17] A. Fukami: Jeol News, July (1967) 5.

Google Scholar

[18] D. San Martín: Modelización de la cinética de austenización y crecimiento de grano austenítico en aceros ferrítico-perlíticos, PhD Thesis, (Universidad Complutense of Madrid, Spain 2003) p.159.

DOI: 10.3989/revmetalm.2001.v37.i2.445

Google Scholar

[19] R. Coladas, J. Masounave, G. Guérin and J. -P. Bailón: Met. Sci. November (1977) p.509.

Google Scholar

[20] L.J. Cuddy and J. C. Raley: Metall. Trans. A Vol. 14 (1983) (1989).

Google Scholar

[21] F. Peñalba, C. García de Andrés, M. Carsí, F. Zapirain: J. Mater. Sci. Vol. 31 (1996) p.3847.

Google Scholar

[22] T. Gladman and F. B. Pickering: J. Iron Steel Inst. Vol. 205 (1967) p.653.

Google Scholar

[23] E.J. Palmiere, C.I. Garcia and A.J. DeArdo: Metall. Mater. Trans. A Vol. 25 (1994) p.277.

Google Scholar

[24] D. San Martin, F.G. Caballero, C. Capdevila and C. Garcia de Andres, Mater Trans. Vol. 45 (2004) p.2797.

Google Scholar

[25] E. Anelli, M. Paolicchi and G. Quintiliani, Private Communication.

Google Scholar

[26] L.M. Cheng, E.B. Hawbolt and T.R. Meadowcroft, Can. Metall. Quart. Vol. 39 (2000) p.73.

Google Scholar

[27] A. J. Ardell, Acta Metall. Vol. 20 (1972) p.601.

Google Scholar

[28] B. Dutta, E. Valdés, C.M. Sellars: Acta Metall. Mater. Vol. 40 (1992) p.653.

Google Scholar

[29] H.S. Zurob, C.R. Hutchinson, Y. Brechet and G. Purdy: Acta Mater. Vol. 49 (2001) p.4183.

Google Scholar

[30] J. Fridberg, L. E. Törndahl and M. Hillert, Jernkont. Ann, Vol. 153 (1969), p.263.

Google Scholar

[31] I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids Vol. 19 (1961) p.35.

Google Scholar

[32] R. D. Doherty, D. J. Srolovitz, A. D. Rollet and M. P. Anderson, Scripta Metall. Vol. 21 (1987) p.675.

Google Scholar

[33] L. Anand and J. Gurland, Metall. Trans. A Vol. 6 (1975) p.928.

Google Scholar

[34] T. Siwecki, S. Zajac and Goran Engberg, Proceedings of the 37th Mechanical Working and Steel Processing Conference (1996) p.721.

Google Scholar

[35] T. Gladman: Iron and Steelmaking Vol. 16 (1989) 241-245.

Google Scholar

[36] N. E. Hannerz and F. de Kazinczy: J. Iron and Steel Inst. May (1970) p.475.

Google Scholar

[37] P. A. Manohar, D.P. Dunne, T. Chandra and C.R. Killmore: ISIJ Int. Vol. 36 (1996) p.194.

Google Scholar