Gears and Springs in Niobium Microalloyed Steels for Automotive Applications

Article Preview

Abstract:

The tensile strength levels required for spring and gear applications are far higher than those commonly associated with other uses of microalloyed steels. In addition, springs and gears are manufactured using highly specific processes. This is why we present first of all a brief overview of the context and objectives of these developments, in order to assess their scope. The work presented here confirms that the effects of Niobium are not simply those usually associated with the precipitation of Nb(CN) carbonitrides: inhibition of recrystallisation, control of austenitic grain coarsening and precipitation hardening . Account must also be taken of the interactions between the Nb and other elements, as well as the slowing down of g => a + carbides transformation observed in certain cases. The number of mechanisms (or interactions) identified clearly shows why there is still a broad range of choices for optimising steel products and processes according to the target application, the production characteristics and the desired value for money ratios.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

753-760

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] On the Road in 2020, A life-cycle analysis of new automotive technologies. MIT Energy Laboratory Report, October 2000, on line at http: /www. mit. edu.

Google Scholar

[2] Joseph F. Toot Jr.: Components Analyst, issue n°36, Feb. (1997).

Google Scholar

[3] F. Wasservogel: «Les matériaux dans l'automobile : vers une répartition nouvelle des rôles entre clients et fournisseurs». La Révue de Métallurgie - CIT (1994), p.1415.

DOI: 10.1051/metal/199491101415

Google Scholar

[4] F.B. Pickering Physical metallurgy and the design of steels,. Ed. Applied Science Publishers, London, UK (1978).

Google Scholar

[5] F. Mudry, A. Le Bon and R. Bulthé « Les aciers : hier, aujourd'hui et demain » La Revue de Métallurgie-CIT novembre (2004), p.957.

Google Scholar

[6] Microalloying '95. Proc. of the Int. Conf. Held under the auspices of the Iron and Steel Society Pittsburgh, PA, USA (June 11-14, 1995).

Google Scholar

[7] Proc. of THERMEC 1997, 7th-11 th July 1997, Univ. of Wollogong, Australia. Pub. By TMS, 420 Commonwealth Drive, Warrendale, PA, USA.

Google Scholar

[8] Proc. of µ-aS98 Microalloying in Steels , San Sebastian 7th-9th Sept. (1998).

Google Scholar

[9] Niobium Science & Technology. Proc. of the Int. Symp. Niobium 2001, December 2-5, 2001, Orlando, Florida, USA. Pub. By Niobium 2001 Ltd. & TMMS.

Google Scholar

[10] Proc. of THERMEC 2003, 7th-11 th July 2003, Universidad Carlos III, Madrid-Leganés, España. Pub. By Trans Tech Publications, Switzerland. Material Science Forum Vols. 426- 432, on line at http: /www. scientific. net.

Google Scholar

[11] J. Rofes Vernis and D. Robat: Engineering Steels for the Automotive Industry - Long micro-alloy steel products, Proceedings of an Automotive Steel Seminar jointly organized by ЦНИИчерМет (Bardin Inst. ) & CBMM-NPC. Moscow 17th -18th Feb. 2004 (bilingual English-Russian edition).

Google Scholar

[12] M. Assefpour-Dezfuly and A. Brownrigg: Metall. Trans. Vol. 20A (1989), p. (1951).

Google Scholar

[13] M. Shimotsusa, N. Ibaraki, T. Ikeda and T. Nakayama: Wire Jour. Int. (March 1998), p.78.

Google Scholar

[14] T. Kimura and Y. Kurebayashi: in.

Google Scholar

[12] p.801.

Google Scholar

[15] W. Heitmann, T.G. Oakwood and H.J. Dziembala: in.

Google Scholar

[9] p.395.

Google Scholar

[16] M. Langa and A. Ouakka: Mec. Ind. 2(2001), p.181.

Google Scholar

[17] J. Mougin, A. Mostacchi and Y. Hersart : Proc. of EUROCORROSION 2004, paper 409, Nice, France, Sept. (2004).

Google Scholar

[18] J.P. Lebrun et al. : « Bilan d'un four de cémentations avancées après deux ans d'utilisation » ATTT 2000. 1er Congrès Européen du Traitement Thermique et Mécanique des Surfaces. 14- 16 juin Metz (France).

Google Scholar

[19] C. Pichard, D. Forest, D. Robat, L. Poirier, J.P. Lebrun and B. Edenhofer : 4-6 Neue Lösungen für die Aufkohlungstechnologien mit Hochdruckgasab-schreckung durch angepasste Stahlmetallurgie" 56 Härterei Kolloquium, 4-6 Okt. 2000. Wiesbaden. Deutschland.

Google Scholar

[20] J.L. Pacheco and G. Krauss: HTM 45 (1990) n°2, p.77.

Google Scholar

[21] W. Bleck and F. Hippenstiel: Microalloying in Case Hardening Steels" Proc. of HSLA 2000, 30 Oct. - 2 Nov. Xi, an (China).

Google Scholar

[22] ECSC final report n° 7210-PR/103 on Development of carburising steels for ultra high process temperatures, (2003).

Google Scholar

[23] W. Bleck et al.: « New Developments for Microalloyed Heat Treating Steels" in.

Google Scholar

[24] B. Garbarz and F.B. Pickering: Mat. Sci. & Technology Vol. 4 (1988), p.117.

Google Scholar

[25] I. Aldaturriaga, J. Bas and M. Ortolland: Proc. of ATTT, Le Mans (sept. 1990).

Google Scholar

[26] J. Schmid et al.: VW Unpublished research report (Nov. 1983).

Google Scholar

[27] K. Hulka: 20th National Convention of M&MS, Jamshedpur, India (1995).

Google Scholar

[28] First of the three Hume-Rothery rules for solid solutions: A.H. Cottrell Theoretical Structural Metallurgy, Edward Arnold Ltd. London, U.K. (1965 Ed. ), p.128.

Google Scholar

[29] B. Serin, Y. Desalos, Ph. Maitrepierre and J. Rofes-Vernis: Mem. Sci. Rev. Mét. No. 75, June 1975; (Charles Hatchett Award 1980).

Google Scholar

[30] C. Fossaert, G. Rees, T. Maurickx and H.K.D.H. Bhadeshia: Met. Mat. Transactions A Vol. 26A (1995), p.21.

Google Scholar

[31] E.J. Palmiere, C.I. Garcia and A.J. DeArdo: Met. Mat. Transactions A Vol. 25A (1994), p.277.

Google Scholar