Influence of Vanadium Microaddition on the Microstructure and Mechanical Properties of High Strength Large Diameter Wire-Rods

Article Preview

Abstract:

This paper analyses the application of vanadium microaddition for the production of high strength 16mm diameter wire-rods. Laboratory trials, simulating industrial cooling conditions after hot rolling, were made in a range between 3 and 8°C/s. The results show that introducing vanadium means that it is possible to optimise chemical composition by reducing elements susceptible to segregation. Besides, high strength values are maintained by means of precipitation hardening. The influence of vanadium microalloying on the crystallographic ferrite unit size was also evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

761-770

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jaiswal and I.D. McIvor: Ironmaking and Steelmaking Vol. 16 (1989), p.49.

Google Scholar

[2] B.D. Clarke and I.D. McIvor: Ironmaking and Steelmaking Vol. 16 (1989), p.335.

Google Scholar

[3] F.B. Pickering, B. Garbaz: Mater. Sci. Technol. Vol. 5 (1989), p.227.

Google Scholar

[4] S. Jaiswal and I.D. McIvor: Mater. Sci. Technol. Vol. 1 (1985), p.276.

Google Scholar

[5] T.D. Mottishaw and G.D.W. Smith. HSLA Steels. Technology and Applications (Ohio ASM, 1984), p.163.

Google Scholar

[6] E. Anelli, J.M. Rodriguez-Ibabe, K. Stercken, M. Thiele, H.A. Schifferl and K. Haberz: New Steel generation for High Strength Laarge Diameter Wire Rods, EUR 20195 (2002).

Google Scholar

[7] Y-J. Park and I.M. Berstein: Fracture 1977 (Waterloo, 1977) Vol. 2, p.33.

Google Scholar

[8] Y.P. Park and I.M. Berstein: Metall. Trans. Vol. 10A (1979), p.1653.

Google Scholar

[9] Z. Guo, T. Furuhara and T. Maki: Scr. Mater Vol. 45 (2001), p.525.

Google Scholar

[10] D.J. Alexander and I.M. Bernstein: Metall Trans. Vol. 20(A) (1989), p.2321.

Google Scholar

[11] T. Gladman: The Physical Metallurgy of Microalloyed Steels, IOM (1997), p.153.

Google Scholar

[12] K. Han, T.D. Mottishaw, G.D.W. Smith, D.V. Edmonds and A.G. Stacey: Mater Sci. Eng. Vol. 190A (1995), p.207.

Google Scholar

[13] B. Garbaz: Proc. Int. Symposium Microalloyed Vanadium Steels, p.193.

Google Scholar

[14] M.A. Linaza, J.L. Romero, J.M. Rodriguez-Ibabe and J.J. Urcola: Scr. Mater. Vol. 29 (1993), p.1217.

Google Scholar

[15] J.M. Rodriguez-Ibabe: Mater. Sci. Forum Vol. 284-286 (1998), p.51.

Google Scholar

[16] J.J. Lewandowski and A.W. Thompson: Met. Trans. Vol. 17A (1986), p.1769.

Google Scholar

[17] J.J. Lewandowski and A.W. Thompson: Acta Metall. Vol. 35 (1987), p.1453.

Google Scholar

[18] T. Gladman, I.D. McIvor and F.B. Pickering: JISI Vol. 210 (1972), p.916.

Google Scholar

[19] J.M. Hyzak and I.M. Bernstein: Metall Trans. 7 (1976), p.1217.

Google Scholar

[20] D.J. Alexander and I.M. Bernstein: Metall. Trans. 13 (A) (1982), p.1865.

Google Scholar

[21] E. Cotrina, B. López and J.M. Rodriguez-Ibabe: Austenite Formation and Decomposition (Chicago, ISS and TMS 2003), p.213.

Google Scholar

[22] D. Bhattacharjee, J.F. Knott, and C.L. Davis: Metall. and Mater. Trans. Vol. 35A (2004), p.121.

Google Scholar