First-Principles Calculations of Metal/Oxide Interfaces: Effects of Interface Stoichiometry

Article Preview

Abstract:

Ab initio pseudopotential calculations of Cu/Al2O3 and Au/TiO2 interfaces have revealed strong effects of interface stoichiometry. About the Cu/Al2O3 system used for coatings and electronic devices, the interfacial bond of the O-terminated (O-rich) Cu/Al2O3(0001) interface is very strong with ionic and covalent Cu-O interactions, although that of the Al-terminated (stoichiometric) one is rather weak with electrostatic and Cu-Al hybridization interactions. About the Au/TiO2 system with unique catalytic activity, the adhesive energy between non-stoichiometric (Ti-rich or O-rich) TiO2(110) surface and a Au layer is very large, and there occur substantial charge transfer and orbital hybridization, which should have close relations to the catalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.W. Finnis: J. Phys. Condens. Matter 8 (1996) 5811.

Google Scholar

[2] T. Hong, J.R. Smith and D.J. Srolovitz: Acta Mater. 43 (1995) 2721.

Google Scholar

[3] R. Benedek, M. Minkoff and L.H. Yamg: Phys. Rev. B 54 (1995) 7697.

Google Scholar

[4] I.G. Batyrev and L. Kleinman: Phys. Rev. B 64 (2000) 033410.

Google Scholar

[5] W. Zhang, J.R. Smith and A.G. Evans: Acta Mater. 50 (2002) 3803.

Google Scholar

[6] S. Tanaka and M. Kohyama: Phys. Rev. B 64 (2001) 235308; Appl. Surf. Sci. 216 (2003) 471.

Google Scholar

[7] S. Tanaka, R. Yang, M. Kohyama, T. Sasaki, K. Matsunaga and Y. Ikuhara: Mater. Trans. 45 (2004) (1973).

Google Scholar

[8] R. Yang, S. Tanaka and M. Kohyama: Phil. Mag. Lett. 84 (2004) 425.

Google Scholar

[9] K. Okazaki, Y. Morikawa, S. Tanaka, K. Tanaka and M. Kohyama: Phys. Rev. B 69 (2004) 235404.

Google Scholar

[10] M. Haruta: Catal. Today 36 (1997) 153.

Google Scholar

[11] J.P. Perdew and A. Zunger: Phys. Rev. B 23 (1981) 5048.

Google Scholar

[12] N. Troullier and J.L. Martins: Phys. Rev. B 43 (1991) (1993).

Google Scholar

[13] T. Tamura, G.H. Lu, R. Yamamoto, M. Kohyama, S. Tanaka and Y. Tateizumi: Modell. Simul. Mater. Sci. Eng. 12 (2004) 945.

Google Scholar

[14] P.W. Tasker and A.M. Stoneham: J. Chimie Phys. 84 (1987) 149.

Google Scholar

[15] T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto and Y. Ikuhara: J. Soc. Mater. Sci. Jpn 52 (2003) 555; Sci. Tech. Adv. Mater. 4 (2003) 575.

Google Scholar

[16] M. Kohyama: Phil. Mag. Lett. 79 (1999) 659; Phys. Rev. B 65 (2002) 184107.

Google Scholar

[17] R. Benedek, D.N. Seidman, M. Minkoff, L.H. Yang and A. Alavi: Phys. Rev. B 60 (1999) 16094.

Google Scholar

[18] S.V. Dmitriev, N. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang and Y. Kagawa: Acta Mater. 52 (2004) (1959).

Google Scholar

[19] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[20] D. Vandervilt: Phys Rev. B 41 (1990) 7892.

Google Scholar

[21] E. Wahlsröm, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Afirch, E. Laegsgaard, J.K. Nørskov and F. Besenbacher: Phys. Rev. Lett. 90 (2003) 026101.

Google Scholar

[22] Y. Wang and G.S. Hwang: Surf. Sci. 542 (2003) 3225.

Google Scholar

[23] T. Akita, K. Tanaka, S. Tsubota and M. Haruta: J. Electro. Microsco. 49 (2000) 657.

Google Scholar

[24] S. Ichikawa, T. Akita, M. Okumura, M. Haruta, K. Tanaka and M. Kohyama: J. Electro. Microsco. 52 (2003) 21.

Google Scholar