Cluster, Surface and Bulk Properties of ZnCd Binary Alloys: Molecular-Dynamics Simulations

Article Preview

Abstract:

The structural and electronic properties of isolated neutral ZnmCdn clusters for m+n £ 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissosiation channels of the clusters considered have been obtained. An empirical many-body potential energy function (PEF), which comprices two- and three-body atomic interactions, has been developed to investigate the structural features and energetics of ZnmCdn (m+n=3,4) microclusters. The most stable structures were found to be triangular for the three-atom clusters and tetrahedral for the four-atom clusters. On the other hand, the structural features and energetics of Znn-mCdm (n=7,8) microclusters, and Zn50, Cd50, Zn25Cd25, Zn12Cd38, and Zn38Cd12 nanoparticles have been investigated by performing molecular-dynamics computer simulations using the developed PEF. The most stable structures were found to be compact and three-dimensional for all elemental and mixed clusters. An interesting structural feature of the mixed clusters is that Zn and Cd atoms do not mix in mixed clusters, they come together almost without mixing. Surface and bulk properties of Zn, Cd, and ZnCd systems have been investigated too by performing molecular-dynamics simulations using the developed PEF. Surface reconstruction and multilayer relaxation on clean surfaces, adatom on surface, substitutional atom on surface and bulk materials, and vacancy on surface and bulk materials have been studied extensively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

December 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Dobrosavljevic, C. Petipas-Dupuis and R. Racek: Phys. Stat. Sol. Vol. 38 (1970), p.159.

DOI: 10.1002/pssb.19700380113

Google Scholar

[2] B. Sapoval and C. Hermann: Physics of Semiconductors (Springer-Verlag, New York, 1995).

Google Scholar

[3] W.A. Tiller: The Science of Crystallization, Vols. 1 and 2 (Cambridge University Press, Cambridge, 1991).

Google Scholar

[4] http: /engineering. wpaFb. af. mil/esh/news.

Google Scholar

[5] http: /www. geocities. com/budb3/arts/meth/sldr. html.

Google Scholar

[6] B.J. Shaw: Acta Metallurgica Vol. 15 (1967), p.1169.

Google Scholar

[7] M. Sahoo, R.A. Porter and R.W. Smith: J. Mater. Sci. Vol. 11 (1976), p.1680.

Google Scholar

[8] M. Sahoo and R.W. Smith: J. Mater. Sci. Vol. 13 (1978), p.283.

Google Scholar

[9] B. Cantor and G.A. Chadwick: J. Cryst. Growth Vol. 36 (1976), p.232.

Google Scholar

[10] R.H. Van de Merwe and R.W. Smith: in In situ Composites IV, F.D. Lemkey, H.E. Cline and M . Mc Lean Eds. (Elsevier Science Publishing, Co., 1982), pp: 291-304.

Google Scholar

[11] M. Kaya and R.W. Smith: Acta Metallurgica, Vol. 37 (1989), p.1657.

Google Scholar

[12] http: /www. frymetals. com/products/tinleadsolder. html.

Google Scholar

[13] http: /www. nikhel. nl/pub/departments/mt/projects/ams/SiTracker.

Google Scholar

[14] http: /www. solders. com/elecsold. html.

Google Scholar

[15] W. Kohn and L.J. Sham: Phys. Rev. Vol. 140 (1965), p.1133.

Google Scholar

[16] R.G. Parr and W. Yang: Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

Google Scholar

[17] A.D. Becke, Phys. Rev., A Vol. 38 (1988), p.3098.

Google Scholar

[18] S.H. Vosko, L. Vilk and M. Nusair, Can. J. Phys. Vol. 58 (1980), p.1200.

Google Scholar

[19] C. Lee, W. Yang and R.G. Parr: Phys. Rev., B Vol. 37 (1988), p.785.

Google Scholar

[20] W. J. Stevens, H. Basch and M. Krauss: J. Chem. Phys. Vol. 81 (1984), p.6026.

Google Scholar

[21] T. J. Cundari and W. J. Stevens: J. Chem. Phys. Vol. 98 (1993), p.5555.

Google Scholar

[22] Gaussian-98 Rev. A. 7 package. Gaussian Corporation.

Google Scholar

[23] S. Erkoc: Chem. Phys. Lett. Vol. 369 (2003), p.605.

Google Scholar

[24] R.W.G. Wyckoff: Crystal Structures (Interscience, New York, 1960) 2nd Ed., Vol. 1.

Google Scholar

[25] C. Kittel: Introduction to Solid State Physics (Wiley, New York, 1986) 6th Ed.

Google Scholar

[26] A. Nordsieck: Math. Compute. Vol. 16 (1962), p.22.

Google Scholar

[27] C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations (Prentice- Hall, Englewood Cliffs, NJ, 1971).

Google Scholar

[28] D.J. Evans and G.P. Morriss: Comp. Phys. Rep. Vol. 1 (1984), p.297.

Google Scholar

[29] L. Amirouche and S. Erkoc: Int. J. Mod. Phys. C Vol. 14 (2003), p.905.

Google Scholar

[30] L. Amirouche and S. Erkoc: Phys. Rev. A Vol. 68 (2003), p.043203.

Google Scholar

[31] S. Katircioglu and S. Erkoc: J. Mol. Struc. (Theochem) Vol. 546 (2001), p.99.

Google Scholar

[32] J. Zhao: Phys. Rev. A Vol. 64 (2001), p.043204.

Google Scholar

[33] L. Amirouche and S. Erkoc: Phys. Stat. Sol. (b) Vol. 241 (2004), p.292.

Google Scholar

[34] S. Erkoc: Phys. Stat. Sol. (b) Vol. 171 (1992), p.317.

Google Scholar

[35] S. Erkoc: Phys. Stat. Sol. (b) Vol. 155 (1989), p.461.

Google Scholar

[36] H.L. Davis and J.R. Noonan: Surf. Sci. Vol. 126 (1983), p.245.

Google Scholar

[37] I. Stensgaard, R. Feidenhans'l, and J.E. Sorensen: Surf. Sci. Vol. 128 (1983), p.281.

Google Scholar

[38] D.L. Adams, H.B. Neilsen, J.N. Andersen, I. Stensgaard, R. Feidenhans'l, and J.E. Sorensen: Phys. Rev. Lett. Vol. 49 (1982), p.669.

Google Scholar

[39] A. Brown and M.F. Ashby: Acta Metall. Vol. 28 (1980), p.1085.

Google Scholar

[40] W.R. Tyson and W.A. Miller: Surf. Sci. Vol. 62 (1977), p.267.

Google Scholar

[41] A. De Vita and M.J. Gillan: J. Phys.: Condens. Matter Vol. 3 (1991), p.6225.

Google Scholar