Interatomic Potentials for Metal/Metal Wetting Systems

Article Preview

Abstract:

Considering the uniqueness of wetting systems consisting of three components, namely, the surface, liquid and liquid/solid interface, it is desirable to construct interatomic potentials following a consistent policy. To investigate the physical meaning of the behavior in terms of the interatomic potentials, the wetting systems are modeled by simple two-body interatomic potentials derived using ab initio molecular orbital calculations for hypothetical clusters representing the above three components. For In and Sn liquid atoms, spreading occurs on a Cu (111) surface, while in contrast, liquid atoms penetrate the substrate and form a surface alloy in the case of a Pd (111) surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Ong, Y. Wu, L. Jiang, P. Liu, and K. Murti: Synthetic Metals 142 (2004), 49.

Google Scholar

[2] G. H. Gilmer, H. Huang, and C. Roland: Comp. Mater. Sci. 12 (1998), 354.

Google Scholar

[3] Y. Yao and Y. Zhang: Phys. Lett. A 256 (1999), 391.

Google Scholar

[4] S. V. Dmitriev, N. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang and Y. Kagawa: Acta mater. 52 (2004), (1959).

Google Scholar

[5] T. Makino, A. Kubo, E. Sugiyama, and S-I. Tanaka: Interface Science, submitted.

Google Scholar

[6] L. A. Girifalco and V. G. Weizer: Phys. Rev. 114 (1959), 687.

Google Scholar

[7] M. J. Frisch et al.: Gaussian 03, Revision B. 04, Gaussian, Inc., Pittsburgh PA, (2003).

Google Scholar

[8] S. Walter, V. Blum, L. Hammer, S. Muller, K. Heinz, and M. Giesen: Surf. Sci. 458 (2000), 155.

Google Scholar

[9] J. E. Prieto, Ch. Rath, S. Muller, R. Miranda, and K. Heinz: Surf. Sci. 401 (1998), 248.

Google Scholar

[10] Z. P. Hu and B. C. Pan: Phys. Rev. B 41 (1990), 9692.

Google Scholar

[11] Z. Crljen, D. Sokcevic, R, Brako and P. Lazic: Vacuum 71 (2003), 101.

Google Scholar

[12] M. I. Haftel: Phys. Rev. B48 (1993), 2611.

Google Scholar

[13] A. Hashibon, J. Adler, M. W. Finnis, and W. D. Kaplan : Interface Science, 9 (2001), 175.

Google Scholar

[14] A. Hashibon, J. Adler, M. W. Finnis, and W. D. Kaplan : Computational Mater. Sci., 24 (2002), 443.

Google Scholar

[15] A. Christensen, A. V. Ruban, P. Stolze, K. W. Jacobsen, H. L. Skriver and J. K. Norskov: Pys. Rev. B 56 (1997), 5822.

Google Scholar

[16] S. H. Overbury and Y. S. Ku: Phys. Rev. B 46, (1992), 7868.

Google Scholar

[17] V. S. Stepanyuk, D. V. Tsivline, D. I. Bazhanov, W. Hergert, and A. A. Katsnelson: Phys. Rev. B 63, (2001), 235406.

Google Scholar

[18] A. R. McGurn and D. M. Estering: Phys. Stat. Sol. B105 (1981), 47.

Google Scholar

[19] M. Hasegawa and W. H. Young: J. Phys. F8 (1978), 81.

Google Scholar

[20] H. Okumura and F. Yonezawa: Phys. Rev. E67 (2003), 021205.

Google Scholar