The Role of Bond Coat in Advanced Thermal Barrier Coating

Article Preview

Abstract:

A novel diffusion barrier bond coat with a duplex layer structure, a sigma phase Re-Cr-Ni barrier and Ni aluminides as an aluminum reservoir was formed on a Ni based superalloy (TMS 82+) and Hastelloy X. The oxidation behavior of both alloys with and without the sigma- Re-Cr-Ni -phase as a diffusion barrier was investigated at temperatures of 1373K (Hastelloy X) and 1423K (TMS-82+) for up to 360ks. It was found that the Re-Cr-Ni acts as a diffusion barrier for both inward diffusion of Al and outward diffusion of alloying elements in the alloy substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-104

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Prescott, R, Mitchell DF, Graham MJ. Corrosion 1994; 50, 62.

Google Scholar

[2] Vaidyanathan K, Jordan EH, Gell M. Acta Mater 2004; 52: 1107.

Google Scholar

[3] N.S. Cheruvu, T.J. Carr, J. Dworak, and J. Coyle: JOM, 48(1996), 34-38.

Google Scholar

[4] S. Govindarajan, J.J. Moore, J. Disam, and C. Suryanarayana; Metallurgical and Materials Transactions A, 30A(1999), 799-806.

Google Scholar

[5] M. Takahashi, Y. Ito, and M. Miyazaki; Proceedings of ITSC'95, Kobe, (1995), 83-88.

Google Scholar

[6] R.A. Page and G.R. Leverant; J. of Engineering for Gas Turbines and Power, 121(1999), 313-319.

Google Scholar

[7] H. Hosoda, T. Kingetsu, and S. Hanad: Proceedings of the 3 rd Padific Rim Conference on Advanced Materials and Processing, edited by M.A. Imam, R. DeNale, S. Hanada, Z. Zhong, and D.N. Lee, TMS (1998), 2379-2384.

Google Scholar

[8] W. Huang and Y.A. Chang; Materials Sciences and Engineering, A259(1999), 110-119.

Google Scholar

[9] S. Narita and T. Narita; to be published in Jap. Inst. of Metals.

Google Scholar

[10] A. Pawar and D.R. Tenney, Metallurgical Transactions, 5 (1974), 2139-2143.

Google Scholar

[11] C.M. Neubauer D. Mari, and D.C. Dunand, Scripta Metallurgica et Materia, 31(1994), 99-104.

DOI: 10.1016/0956-716x(94)90102-3

Google Scholar

[12] Narita T, Hayashi S, Shoji M, Hisamatsu Y, Yoshida D, and Fukumoto M, Corrosion 2001 NACE International, Houston Texas (2001), paper 01157.

Google Scholar

[13] Narita T, Shoji M, Hisamatsu Y, Yoshida D, Fukumoto M, and Hayashi S, Materials at High Temperatures 2001; 18: 245.

Google Scholar

[14] Matsumura Y, Fukumoto M, Hayashi S, Kasama A, Iwanaga I, Tanaka R, and Narita T. Oxid. Met 2004; 61(1/2): 105.

Google Scholar

[15] Fukumoto M, Matsumura Y, Hayashi S, Sakamoto K, Kasama A, Tanaka R, and Narita T. Oxid. Met 2003; 60(3/4): 335.

Google Scholar

[16] T. Narita, M. Fukumoto, Y. Matsumura, S. Hayashi, A. Kasama, I. Iwanaga, and R. Tanaka; NIOBIUM High Temperature Applications, edited by Y-Won Kim and T. Carneiro, TMS 2003, pp.99-112.

Google Scholar

[17] T. Narita, F. Lang, K.Z. Thosin, S. Hayashi, T. Yoshioka, H. Yakuwa, and M. Sohma; to be published in Oxidation of Metals.

Google Scholar