Interpretation of Hardness in Pseudobinary Nitrides by Bulk Modulus Estimated from Interatomic Distance

Article Preview

Abstract:

Hardness of the pseudobinary transition metal aluminum nitride (T-Al-N) films is improved with increasing the AlN content as far as the B1structure is maintained. A drastic change in the compositional dependence of the hardness corresponds to the phase change of the pseudobinary nitride from B1(NaCl) to B4(wurtzite) structure. Predicted value of AlN content for the drastic change agrees with the AlN content determined experimentally. Hardness of various T-Al-N films was closely correlated with the bulk modulus calculated from interatomic distance based on the power functional formula. The improvement of hardness is attributed to the inherent increase of bulk modulus due to dissolution of AlN into transition metal nitride.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-86

Citation:

Online since:

December 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Veprek; J. Vac. Sci. Technol., A17(5)(1999)2401-2420.

Google Scholar

[2] J. Musil; Surf. Coat. Technol. 125(2000)322-330.

Google Scholar

[3] S. Zhang, D. Sun, Y. Fu and H. Du, Surf. Coat. Technol., 167(2003)113-119.

Google Scholar

[4] M.L. Cohen; Phys. Rev., B32(1985)7988-7991.

Google Scholar

[5] P.K. Lam, M.L. Cohen and G. Martinez; Phys. Rev., B35(1987)9190-9194.

Google Scholar

[6] J.C. Phillips; Rev. Mod. Phys., 42(1970)317-356.

Google Scholar

[7] S. Veprek and A.S. Argon, J. Vac. Sci. Technol., B20(2002) 650-664.

Google Scholar

[8] H.S. Myung, H.M. Lee, L.R. Shaginyan and J.G. Han, Surf. Coat. Technol., 163-164(2003)591-596.

Google Scholar

[9] L. Hultman; Vacuum, 57(2000)1-30.

Google Scholar

[10] J. Musil, P. Karvánková and J. Kasl; Surface and Coatings Technol., 139(2001)101-109.

Google Scholar

[11] T. Ikeda and H. Satoh; Thin Solid Films, 195(1991)99-110.

Google Scholar

[12] U. Wahlström, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov and J.E. Greene; Thin Solid Films, 235(1993)62-70.

DOI: 10.1016/0040-6090(93)90244-j

Google Scholar

[13] J. Musil and H. Hruby; Thin Solid Films, 365(2000)104-109.

Google Scholar

[14] Y. Makino and S. Miyake; J. Alloys and Compounds, 313(2000)235-241.

Google Scholar

[15] S. Shimada and M. Yoshimatsu; Thin Solid Films, 370(2000)146-150.

Google Scholar

[16] S. Ikeda, S. Gilles and B. Chenevier; Thin Solid Films; 315(1998)257-262.

Google Scholar

[17] O. Banakh, P.E. Schmid, R. Sanjinés and F. Lévy; Surf. Coat. Technol., 163-164 (2003)57-61.

Google Scholar

[18] M. Kawate, A. Kimura and T. Suzuki; Surf. Coat. Technol., 165(2003)163-167.

Google Scholar

[19] T. Suzuki, Y. Makino, M. Samandi and S. Miyake; J. Mater. Sci., 35(2000)4193-4199.

DOI: 10.1023/a:1004835111782

Google Scholar

[20] Y. Makino; ISIJ International, 38(1998)925-934.

Google Scholar

[21] R. Prange, R. cremer and D. Neuschüts; Surf. Coat. Technol., 133-134(2000)208-214.

Google Scholar

[22] M. Hirai, Y. Ueno, T. Suzuki, W. Jiang, C. Grigoriu and K. Yatsui; Jpn. J. Appl. Phys., 40(2000)1056-1060.

Google Scholar

[23] Y. Makino, M. Mori, S. Miyake, K. Saito and K. Asami; 4th AEPSE conference, Sept-Oct., Jeju, Korea(2003)77; Surf. and Coat. Technol., (2004) in press.

Google Scholar

[24] M. Zhou, Y. Makino, M. Nose and K. Nogi; Thin Solid Films, 339(1999)203-208.

Google Scholar

[25] Y. Makino; 4th AEPSE conference, Sept-Oct., Jeju, Korea(2003)321; Surf. and Coat. Technol., (2004) in press.

Google Scholar

[26] J. Petru, J. Klíma and P. Herzig; Z. Phys. B- Condens. Matter, 76(1989)483-486.

Google Scholar

[27] D. Vogtenhuber-Pawelczak, P. Herzig and J. Klíma; Z. Phys. B-Condens. Matter, 84(1991)211-219.

Google Scholar

[28] Y. Makino; unpublished data.

Google Scholar