Interpretation of Hardness in Pseudobinary Nitrides by Bulk Modulus Estimated from Interatomic Distance

Abstract:

Article Preview

Hardness of the pseudobinary transition metal aluminum nitride (T-Al-N) films is improved with increasing the AlN content as far as the B1structure is maintained. A drastic change in the compositional dependence of the hardness corresponds to the phase change of the pseudobinary nitride from B1(NaCl) to B4(wurtzite) structure. Predicted value of AlN content for the drastic change agrees with the AlN content determined experimentally. Hardness of various T-Al-N films was closely correlated with the bulk modulus calculated from interatomic distance based on the power functional formula. The improvement of hardness is attributed to the inherent increase of bulk modulus due to dissolution of AlN into transition metal nitride.

Info:

Periodical:

Edited by:

Masaaki Naka and Toshimi Yamane

Pages:

81-86

DOI:

10.4028/www.scientific.net/MSF.502.81

Citation:

Y. Makino "Interpretation of Hardness in Pseudobinary Nitrides by Bulk Modulus Estimated from Interatomic Distance ", Materials Science Forum, Vol. 502, pp. 81-86, 2005

Online since:

December 2005

Authors:

Export:

Price:

$38.00

[1] S. Veprek; J. Vac. Sci. Technol., A17(5)(1999)2401-2420.

[2] J. Musil; Surf. Coat. Technol. 125(2000)322-330.

[3] S. Zhang, D. Sun, Y. Fu and H. Du, Surf. Coat. Technol., 167(2003)113-119.

[4] M.L. Cohen; Phys. Rev., B32(1985)7988-7991.

[5] P.K. Lam, M.L. Cohen and G. Martinez; Phys. Rev., B35(1987)9190-9194.

[6] J.C. Phillips; Rev. Mod. Phys., 42(1970)317-356.

[7] S. Veprek and A.S. Argon, J. Vac. Sci. Technol., B20(2002) 650-664.

[8] H.S. Myung, H.M. Lee, L.R. Shaginyan and J.G. Han, Surf. Coat. Technol., 163-164(2003)591-596.

[9] L. Hultman; Vacuum, 57(2000)1-30.

[10] J. Musil, P. Karvánková and J. Kasl; Surface and Coatings Technol., 139(2001)101-109.

[11] T. Ikeda and H. Satoh; Thin Solid Films, 195(1991)99-110.

[12] U. Wahlström, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov and J.E. Greene; Thin Solid Films, 235(1993)62-70.

[13] J. Musil and H. Hruby; Thin Solid Films, 365(2000)104-109.

[14] Y. Makino and S. Miyake; J. Alloys and Compounds, 313(2000)235-241.

[15] S. Shimada and M. Yoshimatsu; Thin Solid Films, 370(2000)146-150.

[16] S. Ikeda, S. Gilles and B. Chenevier; Thin Solid Films; 315(1998)257-262.

[17] O. Banakh, P.E. Schmid, R. Sanjinés and F. Lévy; Surf. Coat. Technol., 163-164 (2003)57-61.

[18] M. Kawate, A. Kimura and T. Suzuki; Surf. Coat. Technol., 165(2003)163-167.

[19] T. Suzuki, Y. Makino, M. Samandi and S. Miyake; J. Mater. Sci., 35(2000)4193-4199.

[20] Y. Makino; ISIJ International, 38(1998)925-934.

[21] R. Prange, R. cremer and D. Neuschüts; Surf. Coat. Technol., 133-134(2000)208-214.

[22] M. Hirai, Y. Ueno, T. Suzuki, W. Jiang, C. Grigoriu and K. Yatsui; Jpn. J. Appl. Phys., 40(2000)1056-1060.

[23] Y. Makino, M. Mori, S. Miyake, K. Saito and K. Asami; 4th AEPSE conference, Sept-Oct., Jeju, Korea(2003)77; Surf. and Coat. Technol., (2004) in press.

[24] M. Zhou, Y. Makino, M. Nose and K. Nogi; Thin Solid Films, 339(1999)203-208.

[25] Y. Makino; 4th AEPSE conference, Sept-Oct., Jeju, Korea(2003)321; Surf. and Coat. Technol., (2004) in press.

[26] J. Petru, J. Klíma and P. Herzig; Z. Phys. B- Condens. Matter, 76(1989)483-486.

[27] D. Vogtenhuber-Pawelczak, P. Herzig and J. Klíma; Z. Phys. B-Condens. Matter, 84(1991)211-219.

[28] Y. Makino; unpublished data.

In order to see related information, you need to Login.