Preparation of Super-Hard Nanocomposite Films by ICP Assisted Magnetron Sputtering

Article Preview

Abstract:

Super-hard nanocomposite films were deposited on Si(100) substrates with irradiation of a high-density (~2.0 mA/cm2) low-energy (~22 eV) ion flux by an inductively coupled plasma (ICP) assistance to magnetron sputtering process. Low-stress, super-hard nanocomposite Ti-Cu-N and Ti-Si-N films could be synthesized at low deposition temperatures below 300 oC. Prepared films exhibited a pronounced TiN(200) texture and the film hardness was significantly enhanced by the addition of Cu and Si, where a maximum value of 42 GPa at approximately 2 at% Cu addition and 48 GPa at approximately 5.8 at.% Si. Ti-Cu-N films were consisting of nanocolumns of TiN crystallites with dispersion of Cu crystallites around the columnar boundaries. While Ti-Si-N films were characterized as having a nanocolumns of TiN crystallites with amorphous Si3N4 inside the columnar boundaries. The residual compressive stresses of these films were lower than 1.5 GPa and no refinement of crystallite size by the addition of Cu and /or Si was observed, from which the hardness enhancement was attributed to a nanocomposite effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-302

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek and M. Šíma: Surf. Coat. Technol. Vol. 108-109 (1998), p.138.

Google Scholar

[2] J. Musil, P. Zeman, H. Hrubý and P.H. Mayrhofer: Surf. Coat. Technol Vol. 120-121 (1999), p.179.

Google Scholar

[3] S. Vepřek, J. Vac. Sci. Technol: Vol. A 17 (1999), p.2401.

Google Scholar

[4] Z. G. LI, M. Mori, S. Miyake, M. Kumagai, T. Saito and Y. Muramatsu: The 4 th Asia-European Int. Conf. on Plasma Surf. Eng., Jeju, Korea, Sept. (2003).

Google Scholar

[5] Z. G. LI, S. Miyake and M. Mori: The 8 th IUMRS Int. Conf. Adv. Mater., Yokohama, Japan, Oct. (2003).

Google Scholar

[6] F. Vaz, L. Rebouta, Ph. Goudeau, J.P. Riviere, E. Schaffer, G.K. Kleer and M. Bodmann: Thin Solid Films Vol. 402 (2002), p.195.

Google Scholar

[7] P.B. Barna, M. Adamik, J. Lábár, L. Kövér, J. Toth, A. Dévényi and R. Manaila: Surf. Coat. Technol. Vol. 125 (2001), p.147.

Google Scholar

[8] L. Karlsson, L. Hultman, M.P. Johansson, J. -E. Sundgren and H. Ljungcrant: Surf. Coat. Technol. Vol. 126 ([2000), p.1.

Google Scholar

[9] W.J. Meng, X.D. Zhang, B. Shi, J.C. Jiang, L.E. Rehn, P.M. Baldo and R. C Tittsworth: Surf. Coat. Technol. Vol. 163-164 (2003), p.251.

Google Scholar

[10] S. Vepřek, A. Niederhofer, K. Moto, T. Bolom, H.D. Männling, P. Nesládek, G. Dollinger and A. Bergmaier: Surf. Coat. Technol. Vol. 133-134 (2002), p.152.

Google Scholar

[11] L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas and J.A. Odriozoda: Surf. Coat. Technol. Vol. 133-134 (2000), p.234.

DOI: 10.1016/s0257-8972(00)00934-8

Google Scholar

[12] L. Shizhi, S. Yulong and P. Hongru: Plasma Chem. Plasma Process 1Vol. 2 (1992), p.256.

Google Scholar

[13] B.H. Park, Y. Kim and K.H. Kim: Thin Solid Films Vol. 348 (1999), p.210.

Google Scholar

[14] J.L. He, Y. Setsuhara, I. Shimizu and S. Miyake: Surf. Coat. Technol. Vol. 137 (2001), p.38.

Google Scholar

[15] H.S. Myung, H.M. Lee, L.R. Shaginyan and J.G. Han: Surf. Coat. Technol. Vol. 163-164 (2003), p.591.

Google Scholar

[16] W.D. Kingergy, H.K. Bowen and D.R. Uhlmann: Introduction to Ceramics, John Wiley and Sons, New York (1976), p.765.

Google Scholar