Size Effects in Plasticity: Experiments and Simulations

Article Preview

Abstract:

Large scale computer simulations suggest that in nanocrystalline metals grain boundaries act as source and sink for dislocations. This suggestion has been the motivation for developing a new in-situ X-ray diffraction technique that allow peak profile analysis of several Bragg diffraction peaks during tensile deformation. Synergies between simulations and experiments are discussed including new applications of the in-situ technique.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

193-200

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. R. Weertman, (2002). Mechanical behaviour of nanocrystalline metals. In: Nanostructured materials: processing, properties, and potential applications. (Norwich (NY): William Andrew Publishing; 2002, Chapter 10. ).

Google Scholar

[2] K. S. Kumar, H. Van Swygenhoven and S. Suresh: Acta Mater. 51 (2003). p.5743.

Google Scholar

[3] F. Dalla Torre, H. Van Swygenhoven and M. Victoria: Acta Mater. 50 (2002), p.3957.

Google Scholar

[4] F. Dalla Torre, Ph.D. Thesis entitled Microstructure and Mechanical Properties of Nanocrystalline Ni produced by Three Different Synthesis Techniques, EPFL, Switzerland, (2003).

Google Scholar

[5] Y. M. Wang and E. Ma: Acta Mater. 52 (2004), p.1699.

Google Scholar

[6] H. Van Swygenhoven, P. M. Derlet, Z. Budrovic and A. Hasnaoui: Z. Metallkd. 10 (2003) p.1106.

Google Scholar

[7] P. M. Derlet, A. Hasnaoui and H. Van Swygenhoven: Scripta Mater. 49 (2003), p.629.

Google Scholar

[8] H. Van Swygenhoven, D. Farkas and A. Caro: Phys. Rev. B 62 (2000), p.831.

Google Scholar

[9] P. M. Derlet and H. Van Swygenhoven: Phys. Rev. B 67 (2003), p.014202.

Google Scholar

[10] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter: Phil. Mag. Lett. 83 (2003), p.385.

Google Scholar

[11] J. Schiøtz and K. W. Jacobsen: Science 301 (2003), p.1357.

Google Scholar

[12] D. J. Honeycutt and H. C. Andersen, J. Phys. Chem. 91: (1987), p.4950.

Google Scholar

[13] B. E. Warren, X-ray Diffraction (Addison-Wesley, Massachusetts, 1969), Chapter 1.

Google Scholar

[14] P. M. Derlet, S. Van Petegem and H. Van Swygenhoven: Phys. Rev. B 71 (2005), p.024114.

Google Scholar

[15] Z. Budrovic, H. Van Swygenhoven, P. M. Derlet, S. Van Petegem and B. Schmidt: Science 304 (2004), p.273.

DOI: 10.1126/science.1095071

Google Scholar

[16] H. Van Swygenhoven and P. M. Derlet: Phys. Rev. B 64 (2001), p.224105.

Google Scholar

[17] A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet: Phys. Rev. B 66 (2002), p.184112.

Google Scholar

[18] A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet: Science 300 (2003), p.150.

Google Scholar

[19] H. Van Swygenhoven, P. M. Derlet and A. Hasnaoui: Phys. Rev. B 66 (2002), p.024101.

Google Scholar

[20] P. M. Derlet, H. Van Swygenhoven and A. Hasnaoui: Phil. Mag. 83 (2003), p.3569.

Google Scholar

[21] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter: Nature Mater. 3 (2004), p.43.

Google Scholar

[22] H. Van Swygenhoven, P. M. Derlet and A. Frøseth: Nature Mater. 3 (2004), p.399.

Google Scholar

[23] A. G. Frøseth, H. Van Swygenhoven and P. M. Derlet: Acta Mater. 52 (2004), p.2259.

Google Scholar

[24] A. G. Frøseth, P. M. Derlet and H. Van Swygenhoven: App. Phys. Let. 85 (2004), p.5863.

Google Scholar

[25] R. C. Hugo, H. Kung, J. R. Weertman, R. Mitra, J. A. Knapp and D. M. Follstaedt: Acta Mater., 51 (2003), p. (1937).

Google Scholar

[26] K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, P. Wang: Acta Mater. 51 (2003), p.387.

Google Scholar

[27] P. M. Derlet and H. Van Swygenhoven: Phil. Mag. A. 82 (2002), p.1.

Google Scholar

[28] Z. Budrovic, S. Van Petegem, P.M. Derlet, B. Schmitt, H. Van Swygenhoven, E. Schafler and M. Zehetbauer, submitted (2005).

Google Scholar