Microstructural Evolution during Friction Stir Welding of Ultrafine Grained Al Alloys

Article Preview

Abstract:

Recently, several metallic materials with ultrafine-grained structures and characterized by high strength and toughness have been developed. When these ultrafine-grained materials are practically used, welding and joining processes are required. However, conventional fusion welding processes result in deterioration of the good mechanical properties of these ultrafine-grained materials due to the drastic grain growth of the ultrafine grains. On the other hand, friction stir welding (FSW) is a solid-state joining process having lower heat-input than fusion welding processes, enabling formation of a fine grain structure in the stir zone. Thus, this process would effectively alleviate deterioration of mechanical properties of the ultrafine-grained materials. The authors applied FSW to ultrafine-grained Al alloys and then examined the microstructural features associated with hardness in the friction stir welds. The present paper reviews microstructural evolution of ultrafine-grained Al alloys, produced by equal channel angular pressing (ECAP) and accumulative roll-bonding (ARB), during FSW.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

169-174

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal, V.I. Reznikov, A.E. Drobysgevsky and V.I. Kopylov: Russian Metallurgy (Metally) Vol. 1 (1981), p.99.

Google Scholar

[2] R.V. Valiev, N.A. Krasilnikov and N.K. Tsenev: Mater. Sci. Eng. A Vol. A137 (1991), p.35.

Google Scholar

[3] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong: Scripta Mater. Vol. 39 (1998), p.1221.

Google Scholar

[4] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47 (1999), p.579.

Google Scholar

[5] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Acta Mater. Vol. 44 (1996), p.4619.

Google Scholar

[6] T.G. Langdon, M. Furukawa, Z. Horita and M. Nemoto: JOM Vol. 50-6 (1998), p.41.

Google Scholar

[7] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A Vol. A265 (1999), p.188.

Google Scholar

[8] Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon: J. Mater. Process. Technol. Vol. 117 (2001), p.288.

Google Scholar

[9] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa: Scripta Mater. Vol. 40 (1999), p.795.

Google Scholar

[10] S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A Vol. 32A (2001), p.707.

Google Scholar

[11] R. Ito, C. Shiga, Y. Kawaguchi, T. Nakamura, K. Hiraoka, T. Hayashi and S. Torizuka: ISIJ Int. (suppl) Vol. 40 (2000), p. S29.

DOI: 10.2355/isijinternational.40.suppl_s29

Google Scholar

[12] Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda and M. Enomoto: Scripta Mater. Vol. 45 (2001), p.109.

Google Scholar

[13] C.J. Dawes and W.M. Thomas: Weld. J. Vol. 75-3 (1996), p.41.

Google Scholar

[14] M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling and W.H. Bampton: Metall. Mater. Trans. A Vol. 29A (1998), p. (1955).

Google Scholar

[15] Y.S. Sato, H. Kokawa, M. Enomoto and S. Jogan: Metall. Mater. Trans. A Vol. 30A (1999), p.2429.

Google Scholar

[16] K.V. Jata, K.K. Sankaran and J.J. Rushau: Metall. Mater. Trans. A Vol. 31A (2000), p.2181.

Google Scholar

[17] Y.S. Sato, Y. Sugiura, Y. Shoji, S.H.C. Park, H. Kokawa and K. Ikeda: Mater. Sci. Eng. A Vol. A369 (2004), p.138.

Google Scholar

[18] K.A.A. Hassan, A.F. Norman, D.A. Price and P.B. Prangnell: Acta Mater. Vol. 51 (2003), p. (1923).

Google Scholar

[19] S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A Vol. 34A (2003), p.987.

Google Scholar

[20] J.Q. Su, T.W. Nelson and C.J. Sterling: J. Mater. Res. Vol. 18 (2003), p.1757.

Google Scholar

[21] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano and M. Inagaki: Scripta Mater. Vol. 49 (2003), p.1175.

Google Scholar

[22] Y.S. Sato, T.W. Nelson and C.J. Sterling: Acta Mater. Vol. 53 (2005), p.637.

Google Scholar

[23] Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda: Scripta Mater. Vol. 47 (2002), p.869.

Google Scholar

[24] Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda: Mater. Sci. Eng. A Vol. A354 (2003), p.298.

Google Scholar

[25] Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda: Mater. Sci. Forum Vol. 426-432 (2003), p.2947.

Google Scholar

[26] Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa and N. Tsuji: Scripta Mater. Vol. 50 (2004), p.57.

Google Scholar

[27] Y. Ito, N. Tsuji, Y. Saito, H. Utsunomiya and T. Sakai: J. Jpn Inst. Met. Vol. 64 (2000), p.429.

Google Scholar

[28] N. Tsuji, Y. Ito, H. Nakashima, F. Yoshida and Y. Minamino: Mater. Sci. Forum Vol. 396-402 (2002), p.423.

Google Scholar

[29] X. Huang, N. Tsuji, N. Hansen and Y. Minamino: Mater. Sci. Eng. A, Vol. A340 (2003), p.265.

Google Scholar

[30] R. Ueji, X. Huang, N. Hansen, N. Tsuji and Y. Minamino: Mater. Sci. Forum Vol. 426-432 (2003), p.405.

Google Scholar

[31] K.V. Jata and S.L. Semiatin: Scripta Mater. Vol. 43 (2000), p.743.

Google Scholar

[32] D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A Vol. 32A (2001), p.2869.

Google Scholar

[33] Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hashimoto: Metall. Mater. Trans. A Vol. 32A (2001), p.941.

Google Scholar

[34] Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A Vol. 32A (2001), p.3023.

Google Scholar

[35] Y.S. Sato, M. Urata and H. Kokawa: Metall. Mater. Trans. A Vol. 33A (2002), p.625.

Google Scholar

[36] B. Heinz and B. Skrotzki: Metall. Mater. Trans. B Vol. 33A (2002), p.489.

Google Scholar

[37] J.Q. Su, T.W. Nelson, R. Mishra and M. Mahoney: Acta Mater. Vol. 51 (2003), p.713.

Google Scholar

[38] Y.S. Sato, S.H.C. Park and H. Kokawa: Metall. Mater. Trans. A Vol. 32A (2001), p.3033.

Google Scholar