Fracture Toughness in Ultra Fine-Grained Magnesium Alloy

Article Preview

Abstract:

The fracture toughness was investigated using in an extruded AZ31 magnesium alloy with an initial grain size of 1.0 μm. Since the small scale yielding condition was not satisfied with the present thin thickness, the value of plane-strain fracture toughness, KIC = 27.9 MPam1/2, was measured from Stretched Zone analysis. The values of KIC in AZ31 magnesium alloys were dependent on the grain size. The grain refinement was found to be one of the improvement methods for fracture toughness in magnesium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

155-160

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASM Specialty Handbook, Magnesium and magnesium alloys, (Materials Park, OH, ASM International, 1999).

Google Scholar

[2] T.G. Nieh, J. Wadsworth and O.D. Sherby; Superplasticity in metals and ceramics, (Cambridge, MA, Cambridge University Press, 1997).

Google Scholar

[3] H. Somekawa, H. Hosokawa, H. Watanabe and K. Higashi; Mater. Sci. Eng. Vol. A339 (2003), p.328.

Google Scholar

[4] H. Somekawa, H. Watanabe, T. Mukai and K. Higashi; Scripta Mater. Vol. 48 (2003), p.1249.

Google Scholar

[5] G.S. Cole; Mater. Sci. Forum Vol. 419-422 (2003), p.43.

Google Scholar

[6] S. Barbagallo and E. Cerri; Eng. Fail. Analysis Vol. 11 (2004), p.127.

Google Scholar

[7] S. Lee, S. H. Lee and D. H. Kim; Metal. Mater. Trans. Vol. 29A (1998), p.1221.

Google Scholar

[8] K. Purazrang, K.U. Kainer and B.L. Mordike; Composite Vol. 22 (1991), p.456.

Google Scholar

[9] T. Sasaki, H. Somekawa, A. Takara, Y. Nishikawa and K. Higashi; Mater. Trans. Vol. 44 (2003), p.986.

Google Scholar

[10] M.T. Perez-Prad and O.A. Ruano; Scripta Mater. Vol. 46 (2002), p.146.

Google Scholar

[11] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi; Scripta Mater. Vol. 45 (2001), p.89.

Google Scholar

[12] H. Watanabe, A. Takara, H. Somekawa, T. Mukai and K. Higashi; Scripta Mater. Vol. 52 (2005), p.449.

Google Scholar

[13] A. Takara, Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai and K. Higashi; Mater. Trans. Vol. 45 (2004), p.2377.

Google Scholar

[14] S.R. Agnew, J.A. Horton, T.M. Lillo and D.W. Brown; Scipta Mater. Vol. 50 (2004), p.377.

Google Scholar

[15] W.J. Kim, C.W. An, Y.S. Kim and S.I. Hong; Scripta Mater. Vol. 47 (2002), p.39.

Google Scholar

[16] H. Somekawa and T. Mukai; submitted.

Google Scholar

[17] H. Somekawa and T. Mukai; submitted.

Google Scholar

[18] R. Armstrong, I. Codd, R.M. Douthwaite and N.J. Petch; Philos. Mag. Vol. 7 (1962), p.45.

Google Scholar

[19] N. Ono, R. Nowak and S. Miura; Mater. Lett. Vol. 58 (2003), p.39.

Google Scholar

[20] H. Watanabe, H. Somekawa and K. Higashi; J. Mater. Res. Vol. 20 (2005), p.93.

Google Scholar

[21] ASTM E399, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, (American Society for Testing and Materials, West Conshohocken, PA).

DOI: 10.1520/stp33670s

Google Scholar

[22] K. Higashi, Y. Hirai and Y. Nakatani; J. Jpn. Inst. Light Metals Vol. 35 (1985), p.520.

Google Scholar

[23] M. Srinivas, G. Malakondaiah, R.W. Armstrong and P. Rama Rao; Acta Metall. Mater, Vol. 39 (1991), p.807.

Google Scholar

[24] M.A. Greenfield and H. Margolin; Metall. Trans. Vol. 2 (1971), p.841.

Google Scholar

[25] D.S. Thompson, R.E. Zinkham, C.W. Price and A.R. Rosenfield; Tech Rep. AFML-TR-74-129 (1975).

Google Scholar

[26] T. Sasaki, H. Somekawa, A. Takara, Y. Nishikawa and K. Higashi; Key Eng. Mater. Vol. 261-263 (2004), p.369.

Google Scholar