Subgrain Size-Distributions, Dislocation Structures, Stacking- and Twin Faults and Vacancy Concentrations in SPD Materials Determined by X-Ray Line Profile Analysis

Article Preview

Abstract:

The fundamentals of X-ray line profile analysis are summarised in terms of subgrain size and size-distribution, dislocation density and dislocation types, especially edge and screw dislocations, intrinsic and extrinsic stacking faults and twin boundaries and vacancies produced during plastic deformation. It is shown that deformation induced vacancy concentrations in the grain boundaries of compressed copper polycrystals are close to the equilibrium values at the melting temperature. The discrepancy between X-ray and TEM size values is discussed in terms subgrain- and grain size. It is shown that this apparent discrepancy might be used to determine the status of fragmentation by severe plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

133-140

Citation:

Online since:

January 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.E. Warren: Progr. Metal Phys. Vol. 8 (1959), p.147.

Google Scholar

[2] M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals (Berlin: Springer-Verlag, 1996).

Google Scholar

[3] E.J. Mittemeijer and P. Scardi, Eds: Diffraction Analysis of the Microstructure of Materials (Berlin: Springer-Verlag, 2004).

Google Scholar

[4] T. Ungár: Scripta Mater. Vol. 51 (2004), p.777.

Google Scholar

[5] T. Ungár, P. Martinetto, G. Ribárik, E. Doryhée, Ph. Walter and M. Anne: J. Appl. Phys. Vol. 91 (2002), p.2455.

Google Scholar

[6] P. Scardi, M. Leoni and Y.H. Dong: Mat. Sci. Forum, Vol. 378-381 (2001), p.132.

Google Scholar

[7] T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst. Vol. 34 (2001), p.298.

Google Scholar

[8] P. Scardi and M. Leoni: Acta Cryst. Vol. 58 (2002), p.190.

Google Scholar

[9] M. Wilkens: Fundamental Aspects of Dislocation Theory, ed. J.A. Simmons, R. de Wit, R. Bullough (Vol. II. Nat. Bur. Stand. US Spec. Publ. No. 317, Washington, DC. USA, 1970) pp.1195-1221.

DOI: 10.6028/nbs.sp.317v1

Google Scholar

[10] M.M.J. Treacy, J.M. Newsam and M.W. Deem: Proc. Roy. Soc. London A, Vol. 433 (1991), p.499.

Google Scholar

[11] L. Balogh and T. Ungár: (2005) in preparation.

Google Scholar

[12] T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, and M. Zehetbauer: Z. Metallkde. (2005) in press.

Google Scholar

[13] G. Tichy and T. Ungár: (2005) in preparation.

Google Scholar

[14] G. Stagika, S. Ichtiaroglou, I. Groma, F. F. Csikor, and E. Aifantis, J. Mech. Behav. Metals, Vol. 14 (2003), p.1.

Google Scholar

[15] G. Caglioti, A. Paoletti and F.P. Ricci: Nucl. Instruments, Vol. 3 (1958), p.223.

Google Scholar

[16] T. Ungár and G. Tichy: phys. stat. sol. (a), Vol. 171 (1999), p.425.

Google Scholar

[17] T. Ungár, I. Dragomir, Á. Révész and A. Borbély: J. Appl. Cryst. Vol. 32 (1999), p.992.

Google Scholar

[18] I.C. Dragomir and T. Ungár: J. Appl. Cryst. Vol. 35 (2002), p.556.

Google Scholar

[19] G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Cryst. Vol. 34 (2001), p.669.

Google Scholar

[20] I.P. Jones and W.B. Hutchinson: Acta Met. Vol. 29 (1981), p.951.

Google Scholar

[21] K. Máthis, K. Nyilas, A. Axt, I.C. Dragomir, T. Ungár and P. Lukáč: Acta Mater. Vol. 52 (2003), p.2889.

DOI: 10.1016/j.actamat.2004.02.034

Google Scholar

[22] Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma and R.Z. Valiev: J. Mater. Res. Vol. 18 (2003), p. (1908).

Google Scholar

[23] G. Ribárik, J. Gubicza and T. Ungár: Mater. Sci. Eng. (A) Vol. 387-389 (2004), p.343.

Google Scholar

[24] W. C. Hinds: Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles (New York: Wiley, 1982).

Google Scholar

[25] R. J. Hellmig, S. C. Baik, R. J. Bowen, Y. Estrin, D. Juul Jensen, H. S. Kim and M. H. Seo: Fundamentals Processing, Applications - NanoSPD2 (J. Wiley VCH Weinheim, 2004), p.257.

Google Scholar

[26] A. P. Zhilyaev, J. Gubicza, G. Nurislamova, Á. Révész, S. Suriñach, M. D. Baró, and T. Ungár: phys. stat. sol. (a), Vol. 198 (2003), p.263.

DOI: 10.1002/pssa.200306608

Google Scholar

[27] R. Mitra, T. Ungár, T. Morita, P. G. Sanders and J. R. Weertman: in Advanced Materials for the 21st Century, (Eds. Y.W. Chung, D.C. Dunand, P.K. Liaw, G.B. Olson, TMS, Warrendale, USA, 1999), p.553.

Google Scholar

[28] E. Schafler, G. Steiner, E. Korznikova, M. Kerber and M. J. Zehetbauer: Mater Sci. Eng. (A) (2005) accepted for publication.

Google Scholar

[29] T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, and M. Zehetbauer: Z. Metallkunde (2005) accepted for publication.

Google Scholar

[30] E. Schafler, K. Simon, S. Bernstorff, P. Hanák, G. Tichy, T. Ungár, M.J. Zehetbauer: Acta Materialia, Vol. 53 (2005), p.315.

DOI: 10.1016/j.actamat.2004.09.025

Google Scholar

[31] A. Seeger, Handbuch der Physik III. (Springer-Verlag, Berlin, 1955).

Google Scholar

[32] I. Kovács, Acta Metall. Vol. 15 (1967), p.1731.

Google Scholar

[33] M. Zehetbauer, Key Eng. Mater., Vol. 97-98 (1994), p.287.

Google Scholar

[34] G. Saada, in Electron Microscopy and Strength of Crystals, eds. G. Thomas & J. Washburn, (New York, Interscience, 1963).

Google Scholar

[35] H. G. Van Bueren, Acta Metall. Vol. 3 (1955), p.519.

Google Scholar