Dissolution of Cementite in Carbon Steels by Heavy Deformation and Laser Heat Treatment

Article Preview

Abstract:

Dissolution behavior of cementite in eutectoid steels with pearlitic and spheroidite structures by severe plastic deformation was studied. Applying a long time milling, cementite dissolved completely and matrix turned out to be nanocrystalline ferrite. By a ball drop deformation (at high strain rates), heavily deformed layers in which cementite dissolves completely or partially were produced. By applying pulsed laser irradiation, re-austenitized zone which transformed to fresh martensite during quenching was produced. The boundary between the re-austenitized zone and matrix exhibited similar microstructure with that observed in specimens subjected to a ball drop deformation. It was suggested that the dissolution of cementite by heavy deformation at high strain rates are probably due to thermal effect, that is, re-austenitization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

461-468

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Hong, W.T. Reynolds, Jr., T. Tarui and K. Hono: Met. Mater. Trans. Vol. 30A (1999) p.717.

Google Scholar

[2] J. Languillaume, G. Kapelski and B. Baudelet: Acta Mater. Vol. 45 (1997) p.1201.

Google Scholar

[3] V.N. Gridnev, V.V. Nemoshkalenko, Y.Y. Meshkov, V.G. Gavrilyuk, V.G. Prokopenko and O.N. Razumov: Phys. Stat. Sol. (a) Vol. 31 (1975) p.201.

DOI: 10.1002/pssa.2210310122

Google Scholar

[4] K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie and T. Takahashi: Scripta Mater. Vol. 44 (2001) p.977.

DOI: 10.1016/s1359-6462(00)00690-4

Google Scholar

[5] A.V. Korznikov, Y.V. Ivanisenko, D.V. Laptionok, I.M. Safarov, V.P. Pilyugin and R.Z. Valiev: NanoStructured Mater. Vol. 4 (1994) p.159.

DOI: 10.1016/0965-9773(94)90075-2

Google Scholar

[6] Z.G. Liu, X.J. Hao, K. Masuyama, K. Tsuchiya, M. Umemoto and S.M. Hao: Scripta Mater. Vol. 44 (2001) p.1775.

DOI: 10.1016/s1359-6462(01)00739-4

Google Scholar

[7] Y. Xu, M. Umemoto and K. Tsuchiya: Mater. Trans. Vol. 43 (2002) p.2205.

Google Scholar

[8] Y. Todaka, M. Umemoto and K. Tsuchiya: ISIJ Int. Vol. 42 (2002) p.1430.

Google Scholar

[9] S. Ohsaki, K. Hono, H. Hidaka and S. Takaki: Scripta Mater. Vol. 52 (2005) p.271.

Google Scholar

[10] A. Pyzalla, L. Wanga, E. Wilda and T. Wroblewski: Wear Vol. 251 (2001) p.901.

Google Scholar

[11] W. Osterle, H. Rooch, A. Pyzalla and L. Wang: Mater. Sci. Eng. A Vol. 303 (2001) p.150.

Google Scholar

[12] G. Baumann, Y. Zhong and H.J. Fecht: NanoStructured Mater. Vol. 7 (1996) p.237.

Google Scholar

[13] W. Lojkowski, M. Djahanbakhsh, G. Burkle, S. Gierlotka, W. Zielinski, H.J. Fecht: Mater. Sci. Eng. A Vol. 303 (2001) p.197.

Google Scholar

[14] A.A. Bataev, V.I. Tushinskii and V.A. Bataev: Phys. Met. Metall. Vol. 80 (1995).

Google Scholar