3D-Atom Probe Investigation of Vacancy Induced Interdiffusion during High Pressure Torsion Deformation

Article Preview

Abstract:

Concentration gradients resulting from long range diffusion during Severe Plastic Deformation (SPD) have been investigated with the 3D Atom Probe technique (3D-AP). First, in a pearlitic steel where alloying elements (Mn, Si and Cr) are partitioned between the ferrite and carbides in the non-deformed state. After processing by High Pressure Torsion (HPT), they are homogeneously distributed in the nanostructure, indicating that long range diffusion occurred along with the dissolution of carbides. 3D-AP data of a Cu-Fe composite processed by HPT show as well a significant interdiffusion of Cu and Fe, probably promoted by additional vacancies. On the basis of these experimental data, and using the theory described for irradiated materials, vacancy fluxes and vacancy production rates were estimated assuming that new vacancies are continuously produced and eliminated on grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

433-438

Citation:

Online since:

January 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Ruoff, R.W. Balluffi, J Appl. Phys. 34 (1963) 2862.

Google Scholar

[2] J. Friedel: Dislocations (Pergamon Press, Oxford UK 1964).

Google Scholar

[3] S. Van Petegem, F. Dalla Torre, D. Segers, H. Van Swygenhoven, Scripta Mater. 48 (2003) 17.

DOI: 10.1016/s1359-6462(02)00322-6

Google Scholar

[4] M. Kiritani, K. Yasunaga, Y. Matsukawa, M. Komatsu, Radiation Effects and Defects in Solids 157 (2002) 3.

Google Scholar

[5] M. Kiritani, Mater. Sci. Eng. A350 (2003) 1.

Google Scholar

[6] M. Atzmon, K.M. Unruh and W.L. Johnson, J. Appl. Phys. 58 (1985) 3865.

Google Scholar

[7] J. Koike and D.M. Parkin, J. Mater. Res. 5 (1990) 1414.

Google Scholar

[8] V.V. Sagaradze and V.A. Shabashov, Nanostruc. Mater. 9 (1997) 681.

Google Scholar

[9] M. Murayama, K. Hono and Z. Horita, Mater. Trans. - JIM 40 (1999) 938.

Google Scholar

[10] A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy; R.Z. Valiev, A. Mukherjee, Nanostructured Materials 11 (1999) 17.

DOI: 10.1016/s0965-9773(98)00157-3

Google Scholar

[11] B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Philipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Acta Mater. 52 (2004) 4469.

DOI: 10.1016/j.actamat.2004.06.006

Google Scholar

[12] A.I. Deryagin, V.A. Zavalishin, V.V. Sagaradze, Nanostruct. Mater. 10 (1998) 411.

Google Scholar

[13] R. Nakkalil, Acta Metall. Mater. 39 (1991) 2553.

Google Scholar

[14] X. Sauvage, D.H. Ping, D. Blavette, K. Hono, Acta Mater. 49 (2001) 389.

Google Scholar

[15] P. Pochet, E. Tominez, L. Chaffron, G. Martin, Phys. Rev. B 52 (1995) 4006.

Google Scholar

[16] X. Sauvage, G. Dacosta, R.Z. Valiev, Ultrafine Grained Materials III, TMS (The Minerals, Metals & Materials Society) (2004) 31.

Google Scholar

[17] X. Sauvage, F. Wetscher and P. Pareige, Acta Mater 53 (2005) 2127.

Google Scholar

[18] Yu. Ivanisenko, W. Lojkowski, R.Z. Valiev and H.J. Fecht, Acta Mater. 51 (2003) 5555.

Google Scholar

[19] T.B. Massalski: Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, USA, 1986) p.915.

Google Scholar

[20] A.R. Yavari, P.J. Desré, T. Benameur, Phys. Rev. Lett. 68 (1992) 2235.

Google Scholar

[21] D. Turnbull, R.E. Hoffman, Acta Metall. 2 (1954) 419.

Google Scholar

[22] A. Barbu, G. Martin, Solid State Phenomena 30-31 (1993) 179.

Google Scholar

[23] K. Sato, T. Yoshiie, Y. Satoh , Q. Xu , M. Kiritani , Mater Sci Eng A350 (2003) 220.

Google Scholar