New Routes for Synthesizing Massive Nanocrystalline Materials

Article Preview

Abstract:

New opportunities for fabricating massive nanocrystalline materials in bulk quantities are required for facilitating the transition of nanocrystalline solids from laboratory samples to technologically relevant materials. Advanced options might be based on combining different nonequilibrium processing routes sequentially, such that an initially metastable state is continuously energized and successively driven farer away from thermodynamic equilibrium. The current paper presents recent results on the evolution of nanoscaled microstructures resulting from combinations of different plastic deformation treatments or of vitrification and severe plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

425-432

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev: Mater. Sci. Eng. A 137 (1991), p.35.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci. 45 (2000), p.103.

Google Scholar

[3] G.P. Dinda, H. Rösner, G. Wilde: Scripta Mater. 52 (2005), p.577.

Google Scholar

[4] H. Chen, Y. He, G.J. Shiflet, S.J. Poon: Nature 367 (1994), p.541.

Google Scholar

[5] R.J. Hebert, J.H. Perepezko: Mater. Sci. Eng. A 375-377 (2004), p.728.

Google Scholar

[6] J. J Kim, Y. Choi, S. Suresh, A.S. Argon: Science 295 (2002), p.654.

Google Scholar

[7] A.L. Greer: Science 267 (1995), p. (1947).

Google Scholar

[8] G. Wilde, N. Boucharat, R.J. Hebert, H. Rösner, W.S. Tong, J.H. Perepezko: Adv. Engr. Mat. 5 (2003), p.125.

DOI: 10.1002/adem.200390019

Google Scholar

[9] Y. Saito, N. Jsuji, H. Utsunomiya, T. Sakai, R.G. Hong: Scripta Mater. 39 (1998), p.1221.

Google Scholar

[10] X. Huang, N. Tsuji, N. Hansen, Y. Minamino: Mater. Sci. Eng. A 340 (2003), p.265.

Google Scholar

[11] G. Wilde, G.P. Dinda, H. Rösner: Adv. Engr. Mat. 7 (2005), p.11.

Google Scholar

[12] H. Hahn, P. Mondal, K.A. Padmanabhan: Nanostruct. Mater. 9 (1997), p.603.

Google Scholar

[13] D.A. Hughes, N. Hansen: Acta Mater. 48 (2000), p.2985.

Google Scholar

[14] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: Nature Mater. 1 (2002), p.45.

Google Scholar

[15] J. Markmann, P. Bunzel, H. Rösner, K.W. Liu, K.A. Padmanabhan, R. Birringer, H. Gleiter, J. Weissmüller: Scripta Mat. 49 (2003), p.637.

Google Scholar

[16] G. P. Dinda, H. Rösner, R.Z. Valiev, G. Wilde: to be published.

Google Scholar

[17] R.Z. Valiev: Nature Mater. 3 (2004), p.511.

Google Scholar

[18] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater. 35 (1996), p.143.

Google Scholar

[19] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Acta Mater. 51 (2003), p.753.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[20] K. Neishi, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 325 (2002), p.54.

Google Scholar

[21] A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, T.G. Langdon, Scripta Mater. 44 (2001), p.2753.

DOI: 10.1016/s1359-6462(01)00955-1

Google Scholar

[22] G. Wilde, R.I. Wu, J.H. Perepezko: Adv. Solid-State Physics 40 (2000), p.391.

Google Scholar

[24] A.R. Yavari, W.J. Botta-Filho, C.A.D. Rodrigues, C. Cardoso, R.Z. Valiev, Scripta Mater. 46 (2002), p.711.

Google Scholar

[25] N. Boucharat, H. Rösner, R.Z. Valiev, G. Wilde: Arch. Mat. Sci. (2005), in press.

Google Scholar

[26] G. Wilde, H. Rösner, to be published.

Google Scholar

[27] N. Boucharat, R. Hebert, H. Rösner, R.Z. Valiev, G. Wilde: Scripta Mat., submitted.

Google Scholar