On the Microstructure of HPT Processed Cu under Variation of Deformation Parameters

Article Preview

Abstract:

The evolution of strength characteristics and the microstructure of copper subjected to high pressure torsion (HPT) are studied under variation of strain and hydrostatic pressure. Measurements of Multiple X-ray Bragg Profile Analysis (MXPA) yield microstructural parameters like dislocation density and arrangement, as well as crystallite (domain) size and distribution, and long-range internal stresses. TEM investigations are carried out to analyse the structural elements and to compare them with the results of MXPA. The strength behaviour is studied by microhardness measurements. The investigations are performed within wide ranges of resolved shear strains 􀁊 = 1 to 400 and of applied pressures p = 0.8 to 8 GPa. The onset of the deformation stages IV and V is strongly affected by the hydrostatic pressure i.e. shifted to higher values of stress and strain with increasing pressure. The experimental results indicate the occurrence of recovery effects, which seem to be of static as well as of dynamic nature, and to be responsible for extended ductility in SPD materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

51-56

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Dubravina, M. J. Zehetbauer, E. Schafler, I.V. Alexandrov, Mater. Sci. Eng A 387-389, 817-821 (2004).

Google Scholar

[2] Zehetbauer, M., Proc. 2nd Int. Symp. on Ultrafine Grained Materials, 2002 TMS Annual Meeting, Seattle, USA, The Minerals, Metals & Materials Society, Warrendale, 669 (2002).

Google Scholar

[3] M. Zehetbauer ,H.P. Stuewe, A. Vorhauer, E. Schafler, J. Kohout, Adv. Eng. Mater. 5(5), 330 (2003).

Google Scholar

[4] M.J. Zehetbauer, L. Zeipper, E. Schafler, Modelling Mechanical Properties of SPD Materials during and after Severe Plastic Deformation, Proc. NATO-ARW workshop Nanostructured Materials by High-Pressure Severe Plastic Deformation, Donetsk, Ukraine 2004, ed. Y. Zhu, Kluwer Acad. Publ., in press.

DOI: 10.1007/1-4020-3923-9_30

Google Scholar

[5] G. Ribarik, T. Ungár, J. Gubicza, J. Appl. Cryst. 34, 669 (2001).

Google Scholar

[6] T. Ungár, J. Gubicza, G. Ribarik, A. Borbely, J. Appl. Cryst. 34, 298 (2001).

Google Scholar

[7] H. Mughrabi, Acta metall. 31, 1367 (1983).

Google Scholar

[8] Mughrabi, H., Ungár, T., Kienle, W., Wilkens, M. (1986) Phil. Mag. 53, 793.

Google Scholar

[9] M. Zehetbauer, V. Seumer, Acta metall. mater. 41, 577 (1993).

Google Scholar

[10] T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta. Mater. 53, 393 (2005).

DOI: 10.1016/j.actamat.2004.09.043

Google Scholar

[11] M. Zehetbauer, T. Ungár, R. Kral, A. Borbely, E. Schafler, B. Ortner, H. Amenitsch, S. Bernstorff, Acta Mater. 47, 1053 (1999).

DOI: 10.1016/s1359-6454(98)00366-8

Google Scholar

[12] T. Ungár, M. Zehetbauer, Scripta Mater. 35, 1467 (1996).

Google Scholar

[13] E. Schafler, K. Simon, S. Bernstorff, P. Hanák, G. Tichy, T. Ungár, M.J. Zehetbauer, Acta. Mater. 53, 315 (2005).

DOI: 10.1016/j.actamat.2004.09.025

Google Scholar

[14] T. Hebesberger, A. Vorhauer, H.P. Stuewe, R. Pippan, Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation, Vienna 2002, J. Wiley VCH Weinheim (Germany), 426 (2004).

Google Scholar