Mechanical Properties and Microstructure of Mg-Zn-Y Alloys Processed by ECAE

Article Preview

Abstract:

Development of high strength I/M Mg alloys has been tried by ECAE processing. The mechanical properties and microstructure of ECAE-processed Mg97Zn1Y2 alloy with LPSO (long-periodic stacking ordered) structure were investigated. The tensile yield strength and elongation of as-cast Mg97Zn1Y2 were improved substantially by ECAE process. ECAE-processed with yield strength of 290 MPa and elongation of 22 % was obtained. The microstructure of ECAE-processed Mg97Zn1Y2 alloy consisted of refined α-Mg with the grain size around 6.5 μm and finely dispersed LPSO phase. Furthermore, the some texture was formed by ECAE process. The improved mechanical properties seem to be originated by the microstructure refinement and texture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

769-774

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kawamura, K. Hayashi and A. Inoue: Mater. Trans. Vol. 42 (2001), p.1172.

Google Scholar

[2] K. Hayashi: Development of Rapidly Solidified Powder Metallurgy Magnesium Alloys with Relative Intensity 100 100 100 100.

Google Scholar

[16] [16] [19] [6] [55] [48] [37] [31] 8P 4P 2P 1P Plane (hkil) Relative Intensity 100 100 100 100.

Google Scholar

[16] [16] [19] [6] [55] [48] [37] [31] 8P 4P 2P 1P Plane (hkil) a) Transverse section 0110 0002 1110 100 100 100 100 Relative Intensity.

Google Scholar

[47] [82] [58] [78] [32] [23] [16] [11] 8P 4P 2P 1P Plane (hkil) 100 100 100 100 Relative Intensity.

Google Scholar

[47] [82] [58] [78] [32] [23] [16] [11] 8P 4P 2P 1P Plane (hkil) b) Longitudinal section 0110 0002 1110 Table 1 The relative intensity of XRD peaks taken from a) transverse section and b) longitudinal section of the Mg97Zn1Y2 alloy ECAE-processed at 623 K. )( 0110 )( 1110 )( 0110 1110(High Strength (Master thesis, Tohoku University, 2001).

Google Scholar

[3] E. Abe, Y. Kawamura, K. Hayashi and A. Inoue: Acta Mater. Vol. 50 (2002), p.3845.

Google Scholar

[4] D. H. Ping, K. Hono, Y. Kawamura and A. Inoue: Philos. Mag. Lett.,. Vol. 82 (2002), p.543.

Google Scholar

[5] Z. P. Luo and S. Q. Zhang: J. Mater. Sci. Lett., Vol. 19 (2000), p.813.

Google Scholar

[6] Z. P. Luo, S. Q. Zhang, Y. L. Tang, and D. S. Zhao: J. Alloys Comp., Vol. 209 (1994), p.275.

Google Scholar

[7] T. Itoi, T. Seimiya, Y. Kawamura and M. Hirohashi: Scr. Mater., Vol. 51 (2004), p.107.

Google Scholar

[8] Y. Kawamura, S. Yoshimoto: Magnesium Technology 2005 (TMS, Warrendale, Pennsylvania, 2005), pp.499-502.

Google Scholar

[9] K. Matsubara, Y. Miyahara, Z. Horita and T. G. Langdon: Acta Mater. Vol. 51 (2003), p.3073.

Google Scholar

[10] K. Matsubara, Y. Miyahara, K. Makii, Z. Horita and T. G. Langdon: Mater. Sci. Forum Vols. 419-422 (2003), p.497.

DOI: 10.4028/www.scientific.net/msf.419-422.497

Google Scholar

[11] Y. Miyahara, K. Matsubara, K. Neishi, Z. Horita and T. G. Langdon: Mater. Sci. Forum Vols 419-422 (2003), p.551.

Google Scholar

[12] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi: Scr. Mater., Vol. 45 (2001), p.89.

Google Scholar