Nanocrystalline Formation during Mechanical Attrition of Cobalt

Article Preview

Abstract:

The nanocrystalline (nc) formation was studied in cobalt (a mixture of ε (hexagonal close packed) and γ (face-centered cubic) phases) subjected to surface mechanical attrition treatment. Electron microscopy revealed the operation of { 10 10 }〈 1120 〉 prismatic and {0001}〈 1120 〉 basal slip in the ε phase, leading to the successive subdivision of grains to nanoscale. In particular, the dislocation splitting into the stacking faults was observed to occur in ultrafine and nc grains. By contrast, the planar dislocation arrays, twins and martensites were evidenced in the γ phase. The strain-induced γ→ε martensitic transformation was found to progress continuously in ultrafine and nc grains as the strain increased. The nc formation in the γ phase was interpreted in terms of the martensitic transformation and twinning.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

751-756

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov. Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] Y.T. Zhu and T.G. Langdon: JOM Vol. 56 (2004), p.58.

Google Scholar

[3] T.C. Lowe and R.Z. Valiev: JOM Vol. 56 (2004), p.64.

Google Scholar

[4] M. Furukawa, Z. Horita, T.G. Langdon. Adv. Eng. Mater. Vol. 3 (2001), p.121.

Google Scholar

[5] K. Lu and J. Lu. J Mater. Sci. Technol. Vol. 15 (1999), p.193; Mater. Sci. Eng. A Vol. 375-77 (2004), p.38.

Google Scholar

[6] Y.T. Zhu, T.C. Lowe, T.G. Langdon. Scripta Mater. Vol. 51 (2004), p.825.

Google Scholar

[7] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon. Metall. Mater. Trans. A. Vol. 31 (2000), p.691.

Google Scholar

[8] J.Y. Huang, Y.T. Zhu, H. Jiang and T.C. Lowe. Acta Mater. Vol. 49 (2001), p.1497.

Google Scholar

[9] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon. Acta Mater. Vol. 45 (1997), p.4733.

Google Scholar

[10] S.D. Terhune, D.L. Swisher, K. Oh-Ishi, Z. Horita, T.G. Langdon and T.R. McNelley. Metall. Mater. Trans. A. Vol. 33 (2002), p.2173.

DOI: 10.1007/s11661-002-0049-x

Google Scholar

[11] X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu and K. Lu. Acta Mater. Vol. 50 (2002), p. (2075).

Google Scholar

[12] N.R. Tao, Z. Wang, W. Tong, M. Sui, J. Lu and K. Lu. Acta Mater. Vol. 50 (2002), p.4603.

Google Scholar

[13] M.J. Bibby and J. Gordon Parr. Cobalt Vol. 20 (1963), p.111.

Google Scholar

[14] X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu and K. Lu. Acta Mater. Vol. 53 (2005), p.681.

Google Scholar

[15] X. Wu, N. Tao, Y. Hong, J. Lu and K. Lu. Scripta Mater. Vol. 52 (2005), p.547.

Google Scholar

[16] C. Hitzenberger, H.P. Karnthaler and A. Korner. Phys. Stat. Sol (a). Vol. 89 (1985), p.133.

Google Scholar

[17] D.H. Shin, I. Kim, J. Kim, Y.S. Kim and S.L. Semiatin. Acta Mater. Vol. 51 (2003), p.983.

Google Scholar

[18] M.H. Yoo and C.T. Wei. J App. Phys. Vol. 38 (1967), p.4317.

Google Scholar