Microstructure and Mechanical Properties Resulting from Cold Rolling of Equal Channel Angular Extruded Commercial Purity Copper

Article Preview

Abstract:

Equal channel angular extrusion (ECAE) is a processing method for introducing an ultrafine grain size into a material. In the present study, a two-step severe plastic deformation process was used to produce ultrafine grained copper with significantly enhanced strength. Equal channel angular extrusion was first used to refine the grain size of copper samples. The copper samples were further processed by cold rolling (CR) to a strain of 0.67 (about 50% reduction). This two-step process produced ultrafine grained copper with strengths higher than those of pure copper processed through ECAE only. This paper reports the microstructures and mechanical properties of the copper specimens processed by a combination of room temperature ECAE and CR. The effectiveness of initial processing by ECAE prior to cold rolling is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

733-738

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. 45 (1997), p.4733.

Google Scholar

[2] Y. T. Zhu, Terry C. Lowe and Terence G. Langdon: Scripta Mater. 51 (2004), p.825.

Google Scholar

[3] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A 299 (2001), p.59.

Google Scholar

[4] R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev: Mater. Sci. Eng. A 137 (1991), p.35.

Google Scholar

[5] Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev and Y. T. Zhu: Acta Mater. 52 (2004), p.4589.

Google Scholar

[6] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. 46 (1998), p.3317.

Google Scholar

[7] K. Oh-Ishi, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. 29A (1998), p. (2011).

Google Scholar

[8] K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. 46 (1998), p.1589.

Google Scholar

[9] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. 29A (1998), p.2503.

Google Scholar

[10] R. Z. Valiev and A. K. Mukherjee: Srcipta. Mater. 44 (2001), p.1747.

Google Scholar

[11] S.X. McFadden, R.Z. Valiev and A.K. Mukherjee: Mater. Sc. Eng. A319 (2001), p.849.

Google Scholar

[12] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Materials Science. 45 (2000), p.103.

Google Scholar

[13] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: J. Mater. Sci. 36 (2001), p.2835.

Google Scholar

[14] V.M. Segal: Mater. Sci. Eng A197 (1995), p.157.

Google Scholar

[15] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev: Mater. Sci. Eng. A137 (1991), p.35.

Google Scholar

[16] N.A. Akhmadeev, N.P. Kobelev, R.R. Mulyukov, Ya.M. Soifer and R.Z. Valiev: Acta Metall. Mater. 41 (1993) 1041.

Google Scholar

[17] J. Wang, M. Furukawa, Z. Hotita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Mater. Sci. Eng. A216 (1996), p.41.

Google Scholar

[18] M. Furukawa, Zenji Horita and Terence G. Langdon: Mater. Sc. Eng. A332 (2002), p.97.

Google Scholar

[19] V.M. Segal: Mater. Sc. Eng. A386 (2004), p.269.

Google Scholar