Microstructure and Corrosion Behaviour of Ultrafine-Grained Copper

Article Preview

Abstract:

Microstructure evolution and corrosion behaviour of ultrafine-grained copper processed by equal channel angular pressing (route Bc) were studied. The results of TEM investigation of the microstructure evolution are presented along with the measurements of the corrosion potential, the corrosion current density and the anodic current density for two aggressive media, viz. 3% NaCl and 1M H2SO4. An important finding and a good news is that the corrosion behaviour of ECAP copper is not inferior to and does not qualitatively differ from that of the coarse grained material. Moreover, it was shown by SEM investigation that the corrosion damage is more homogeneous in ultrafine grained ECAP processed copper than in its coarse grained counterpart.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

883-888

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal: Mater. Sci. Eng. A197 (1995), p.157.

Google Scholar

[2] V.M. Segal: Mater. Sci. Eng. A271 (1999), p.322.

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci. 45 (2000), p.103.

Google Scholar

[4] V. M Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov: Russ Metall 1 (1981), p.99.

Google Scholar

[5] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: J. Mater. Sci. 36 (2001), p.2835.

Google Scholar

[6] Y. Iwanashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. 29A (1996), p.2245.

Google Scholar

[7] Z.Y. Liu, G.X. Liang, E. D Wang, Z.R. Wang: Mater. Sci. Eng. A242 (1998), p.137.

Google Scholar

[8] B. Mingler, H.P. Karnthaler, M. Zehetbauer, R.Z. Valiev: Mat. Sci. Eng. A319 (2001), p.242.

Google Scholar

[9] C. Xu, M. Furukawa, Z. Horita, T.G. Langdon: J. of Alloys and Compounds 378 (2004), p.27.

Google Scholar

[10] A. Vinogradov, T. Mimaki, S. Hashimoto and R. Valiev: Scripta Mat. 41 (1999), 319.

Google Scholar

[11] H.S. Kim, S.I. Hong, M.H. Seo: Jour. Mater. Res. 16 (2001), p.856.

Google Scholar

[12] S. Ferrasse, V. Segal, K.T. Hartwig, R. Goforth: Metall. Mater. Trans. 28A (1997), p.1047.

Google Scholar

[13] M. Jane�ek, B. Hadzima, R.J. Hellmig, Y. Estrin: Metallic Materials (2005), in press.

Google Scholar

[14] B. Hadzima, P. Pal�ek, M. Chalupová, R. �anády: Metallic Materials 41 (2003), p.257.

Google Scholar

[15] F. Dalla Torre, R. Lapovok, P.F. Thomson, C.H.J. Davies, E.V. Pereloma: Acta Mater. 52 (2004), p.4819.

Google Scholar

[16] D.A. Hughes, N. Hansen: Acta Mater. 48 (2000), p.2985.

Google Scholar

[17] R.Z. Valiev, V. Y. Gerstman, O.A. Kaibyshev: Phys. Stat. Sol. A 97 (1986), p.11.

Google Scholar

[18] R.Z. Valiev: Nanomaterials by severe plastic deformation, Proc. NanoSPD2 conf., ed. M.J. Zehetbauer, R.Z. Valiev, (Wiley-VCH, Weinheim, 2004), p.109.

DOI: 10.1002/3527602461

Google Scholar

[19] R.J. Hellmig, S.C. Baik, J.R. Bowen, Y. Estrin, D.J. Jensen, H.S. Kim, M.H. Seo: ibid, p.257.

Google Scholar

[20] F. King: Corrosion of copper in alkaline chloride environments, Tech. Report TR-02-25, SKB, Stockholm (2002).

Google Scholar

[21] H.P. Leckie: J. Electrochem. Soc. 117 (1970), p.1478.

Google Scholar