Three Dimensional Numerical Investigation of Equal Channel Multi-Angular Pressing

Article Preview

Abstract:

Plastic deformation behavior during equal channel multi-angular pressing (ECMAP) was analyzed using the three dimensional finite volume method of the commercial code MSC.Superforge. In order to understand local and global deformation characteristics, effective strain and pressing load histories were investigated. The predicted plastic deformation behavior of the workpiece material during ECMAP of route A, route B and route C with a theoretical total strain of ~2.2 upon a single pass at three different friction factors (m=0, 0.1 and 0.2) was compared. The predicted strain results show different values in outside and similar values in central regions of the processed workpieces with different friction and forming routes. The pressing loads are higher under higher friction condition, showing almost no difference with three different pressing routes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

931-936

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. M. Segal, Mater. Sci. Eng. A197 (1995) 157.

Google Scholar

[2] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[3] R. Z. Valiev, Met. Mater. Int. 7 (2001) 413.

Google Scholar

[4] I. Alexandrov, Met. Mater. Int. 7 (2001) 565.

Google Scholar

[5] M. Furukawa, Z. Horita and T. G. Langdon, Met. Mater. Int. 9 (2003) 141.

Google Scholar

[6] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. 45 (1997) 4733.

Google Scholar

[7] C. Xu, M. Furukawa, Z. Horita and T. G. Langdon, Acta Mater. 53 (2005) 749.

Google Scholar

[8] I. V. Alexandrov, A. A. Dubravina, A. R. Kilmametov, V. U. Kazykhanov and R. Z. Valiev, Met. Mater. Int. 9 (2003) 151.

DOI: 10.1007/bf03027271

Google Scholar

[9] Y. K. Kim, S. M. Kim, K. S. Lee, J. J. Park and D. H. Shin, Met. Mater. Int. 7 (2001) 437.

Google Scholar

[10] H. J. Cui, R. E. Goforth and K. T. Hartwig, JOM-e 50 (1998).

Google Scholar

[11] J. R. Bowen, A. Gholinia, S. M. Roberts and P. B. Prangnell, Mater. Sci. Eng. A287 (2000) 87.

Google Scholar

[12] S. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander and M. Bourke, Acta Mater. 52 (2004) 4859.

Google Scholar

[13] Z. Y. Liu, G. X. Liang, E. D. Wang and Z. R. Wang, Mater. Sci. Eng. 242A (1998) 137.

Google Scholar

[14] K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Mater. Sci. Eng. 281A (2000) 82.

Google Scholar

[15] H. S. Kim, Mater. Sci. Eng. A328 (2002) 317.

Google Scholar

[16] K. J. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs (1995).

Google Scholar

[17] MSC. Superforge User's Guide Ver. 2002, MacNeal-Schwendler Co., Tokyo (2002) pp.2-29.

Google Scholar

[18] ASM Specialty Handbook/Magnesium and Magnesium Alloys, Materials Information Society.

Google Scholar

[19] Smithells Metals Reference Book 7Ed., E. A. Brandes and G. B. Brook Eds., Elsevier (1997).

Google Scholar

[20] H. S. Kim, M. H. Seo and S. I. Hong, Mater. Sci. Eng. 291A (2000) 86.

Google Scholar

[21] H. S. Kim, S. I. Hong and M. H. Seo, J. Mater. Res. 16 (2001) 856.

Google Scholar

[22] H. S. Kim, Mater. Sci. Eng. A315 (2001) 122. ٻ.

Google Scholar