Thermal Contact Residual Stress Analysis of Elastic-Plastic Bilayer Micro-Cantilevers with Platinum Electrodes

Article Preview

Abstract:

This paper studies the residual stress distributions and tip deflections of microfabricated bilayer cantilevers of varying beam thickness and platinum electrode length. The bilayer cantilevers discussed here are composed of low-stress silicon nitride films deposited on silicon beams. Platinum electrodes are deposited and patterned on the low-stress silicon nitride layers. A thermal elastic-plastic finite element model is utilized to calculate the residual stress distribution across the cantilever cross-section and to determine the cantilever tip deflection following heat treatment. A contact model is introduced to simulate the influence of contact on the residual stress distribution. The influences of the beam thickness and the platinum electrode length on the residual stress distribution and tip deflections are thoroughly investigated. The numerical results indicate that a smaller beam thickness leads to a larger compressive residual stress within the platinum electrode and delivers a larger tip deflection. The results also indicate that a larger platinum electrode length delivers a smaller tip deflection.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

559-564

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kuang; Q.A. Huang and N.K.S. Lee. Microsystem Technologies 8, 17 (2002).

Google Scholar

[2] T. Kobayashi, Y. Murakoshi and R. Maeda. Microsystem Technologies 10, 423 (2004).

Google Scholar

[3] C.T. Chen, H. Nguyen and M.C. Wu. Proc. IEEE MEMS 1999, 424 (1999).

Google Scholar

[4] M.A. Helmbrecht, U. Srinivasan, C. Rembe, R.T. Howe and R.S. Muller. Proc. Transducers 2001, 1290 (2001).

Google Scholar

[5] C.Y. Lee, G.B. Lee. J Micromech Microeng 13, 620 (2003).

Google Scholar

[6] Y. Su, A.G.R. Evans, A.B. Brunnschweiler and G. Ensell. J Micromech Microeng 12, 780 (2002).

Google Scholar

[7] W.I. Cho, N.C. Park, H. Yang and Y.P. Park. Microsystem Technologies 8, 139 (2002).

Google Scholar

[8] F. Ericson, S. Greek, J. Söderkvist and JÅ Scheweitz. J Micromech Microeng 7, 30 (1997).

Google Scholar

[9] S. Petronis, J. Gold and B. Kasemo. J Micromech Microeng 13, 900 (2003).

Google Scholar

[10] W. Fang. J Micromech Microeng 9, 230 (1999).

Google Scholar

[11] M. Brissaud, L. Sarah and P. Gonnard. J Micromech Microeng 13, 832 (2003).

Google Scholar

[12] W. Peng and B. Bhushan. Microsystem Technologies 9, 340 (2003).

Google Scholar

[13] T. Cui, D. Markus, S. Zurn and D.L. Polla. Microsystem Technologies 10, 137 (2004).

Google Scholar

[14] P.A. Flinn, D.S. Gardner and W.D. Nix. IEEE Transaction on Electron Device ED-34, 689 (1987).

Google Scholar

[15] T.C. Hodge, S.A. Bidstrup-Allen and P.A. Kohl. IEEE Transactions on Components, Package, and Manufacturing Technology A-20(2), 241 (1997).

Google Scholar

[16] V.K. Pamula, A. Jog and R.B. Fair. Proc Intl Conference on Modeling and Simulation of Microsystems 2001, 410 (2001).

Google Scholar

[17] J. Frühauf, E. Gärtner and E. Jänsch. J Micromech Microeng 9, 305 (1999).

Google Scholar

[18] G.B. Lee, H.H. Lee and T.T. Chou. Proc Nano and Micro System Conference 2003, 113 (2003).

Google Scholar