Quantum Dots CdSe/ZnS-Loaded Poly(D,L-Lactide-Co-Glycolide) Nanoparticles: Physicochemical Characterization and Application

Article Preview

Abstract:

This paper described and characterized the quantum dots (QDs) with/without the polymeric PLGA applied in MC3T3E-1 delivery. Neat QDs were treated with various solvents, temperatures, exposure time and concentration to evaluate their stability and efficacy. We found that the intensity degree of fluorescence spectra (QDs) in different solvents follows the order: ether > THF > acetone > chloroform > methanol. Importantly, the QDs become inactive after 8-hr dissolution in the solvents of ether, THF or chloroform. According to this result, acetone and methanol are ideal solvents for QDs. The optimum concentration range of QDs in acetone is 5 to 10 mg/mL. We found that no obvious difference of fluorescence intensity was detected in QDs stored respectively at 4 °C, 24 °C and 44 °C (8-hour). When QDs were exposed to UV light (312 nm) for 2 hr, serious decay of fluorescence intensity was observed. In order to extend the application of QDs in medical areas, we encapsulated them in individual biocompatible poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for in-vitro imaging of endocytosis in MC3T3E-1 cells. We demonstrated that the polymeric PLGA have the ability to permeate the cells for cellular internalization; the endocytotic activity could be enhanced by the polymeric QDs-encapsulated PLGA.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

667-672

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.C. Chan and S. Nie: Science Vol. 281 (1998), p. (2016).

Google Scholar

[2] P. Mitchell: Nat. Biotechnol. Vol. 19 (2001), p.1013.

Google Scholar

[3] Y.T. Lim, S. Kim, A. Nakayama, N.E. Stott, M.G. Bawendi and J.V. Frangioni: Mol. Imaging Vol. 2 (2003), p.50.

Google Scholar

[4] S. Kim, Y.T. Lim, E.G. Soltesz, A.M.D. Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi and J.V. Frangioni: Nat. Biotechnol. Vol. 22 (2004), p.93.

DOI: 10.1038/nbt920

Google Scholar

[5] A.P. Alivisatos: Science Vol. 271 (1996), p.933.

Google Scholar

[6] M.J. Bruchez, M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos: Science Vol. 281 (1998), p. (2013).

Google Scholar

[7] H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec and M.G. Bawendi: J. Am. Chem. Soc. Vol. 122 (2000), p.12142.

DOI: 10.1021/ja002535y

Google Scholar

[8] C.M. Niemeyer: Angew. Chem. -Int. Edit. Vol. 40 (2001), p.4128.

Google Scholar

[9] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A.P. Alivisatos: Nature Vol. 404 (2000), p.59.

DOI: 10.1038/35003535

Google Scholar

[10] B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A. Libchaber: Science Vol. 298 (2002), p.1759.

DOI: 10.1126/science.1077194

Google Scholar

[11] Y. Chen and Z. Rosenzweig: Nano Letters Vol. 2 (2002), p.1299.

Google Scholar

[12] J.A. Kloepfer, N. Cohen and J.L. Nadeau: J. Phys. Chem. B Vol. 108 (2004), p.17042.

Google Scholar

[13] G. Kalyuzhny and R.W. Murray: J. Phys. Chem. B Vol. 109 (2005), p.7012.

Google Scholar

[14] G. Zhu, S.R. Mallery, S.P. Schwendeman: Nat. Biotechnol. Vol. 18 (2000), p.52.

Google Scholar

[15] R.H. Vanrell, L. Ramirez, A.F. Carballido and M.F. Refojo: Pharm. Res. Vol. 17 (2000), p.1323.

Google Scholar

[16] J.M. Anderson and M.S. Shive: Adv. Drug Deliv. Rev. Vol. 28 (1997), p.5.

Google Scholar

[17] L. Mu and S.S. Feng: J. Control. Release Vol. 86 (2003), p.33.

Google Scholar

[18] Z.A. Peng and X. Peng: J. Am. Chem. Soc. Vol. 123 (2001), p.183.

Google Scholar

[19] S.J. Lee, J.R. Jeong, S.C. Shin, J.C. Kim, Y.H. Chang, K.H. Lee and J.D. Kim: Colloid Surf. A-Physicochem. Eng. Asp. Vol. 255 (2005), p.19.

Google Scholar