The Characteristic of Abrasive Particle in Chemical – Mechanical Polishing

Article Preview

Abstract:

Chemical Mechanical Polishing (CMP) is the key technique for wafer global planarization. However, the characteristic of abrasive particle, including particle size and grain/grain collision elasticity, plays an important role in CMP process. This investigation analyzes the slurry flow between the wafer and pad using a grain flow model with partial hydrodynamic lubrication theory. This model predicts the film thickness and remove rate of the slurry flow under a variety of the CMP parameters including load, rotation speed, pad roughness, grain/grain collision elasticity and grain size. The theoretical results compare well with the previous experiment data. This study elucidates the grain characteristics during CMP process. It also contributes to the understanding of abrasive particle effects in the chemical mechanical polishing mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

805-810

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Preston, F., J. Soc. Glass Technol., 11 (1927), p.214.

Google Scholar

[2] Cook, L. M., J. Non-Crystal Solids, 120 (1990), p.152.

Google Scholar

[3] Nanz, G. and Camilletti, L. E., IEEE Trans, Semiconductor Manufacturing, 8 (1995), p.382.

Google Scholar

[4] Bhushan, M., Rouse, R., and Lukens, J. E., J. Electrochem. Soc., 142 (1995), p.3845.

Google Scholar

[5] Chekina, O. G., Keer, L. M., and Liang, H., J. Electrochem. Soc., 145 (1998), p.2100.

Google Scholar

[6] Tseng, W. -T., Wang, Y. -H., and Chin, J. -H., J. Electrochem. Soc., 146 (1999), p.4273.

Google Scholar

[7] Zhao, Y. and Chang, L., Wear, 252 (2002), p.220.

Google Scholar

[8] Runnels, S. R. and Eyman, L. M., J. Electrochem. Soc., 141 (1994), p.1698.

Google Scholar

[9] Runnels, S. R., J. Electrochem. Soc., 141 (1994), p. (1900).

Google Scholar

[10] Chen, J. M. and Fang, Y. C., IEEE Trans, Semiconductor Manufacturing, 15 (2002), p.39.

Google Scholar

[11] Sundararajan, S., Thakurta, D. G., Schwendeman, D. W., Murarka, S. P., and Gill, W. N., J. Electrochem. Soc., 146 (1999), p.761.

Google Scholar

[12] Thakurta, D. G., Borst, C. L., Schwendeman, D. W., Gutmann, R. J., and Gill, W. N., Thin Solid Films, 336 (2000), p.181.

Google Scholar

[13] Liang, H., Kaufman, F., Sevilla, R., and Anjur, S., Wear, 211 (1997), p.271.

Google Scholar

[14] Lu, J., Coppeta, J., Rogers, C., Racz, L., Philipossian, A., Moinpour, A., and Kaufman, F., Mater. Res. Soc. Symp. Proc., San Francisco, 613 (2000), p. E1. 2. 1.

Google Scholar

[15] Haff, P. K., J. Fluid Mech. 134 (1983), p.401.

Google Scholar

[16] Dai, F., Khonsari, M. M. and Lu, Y. Z., Tribol. Trans., 37 (1994), p.516.

Google Scholar

[17] Heshmat, H., Lubri. Eng., 48 (1992), p.373.

Google Scholar

[18] Jeng, Y. R. and Tsai, H. J., J. Phys. D: Appl. Phys., 35 (2002), p.1585.

Google Scholar

[19] Patir, N. and Cheng, H. S., ASME J. Lubri. Technol., 100 (1978), p.12.

Google Scholar

[20] Patir, N. and Cheng, H. S., ASME J. Lubri. Technol., 101 (1979), p.220.

Google Scholar

[21] Tripp, J. H., ASME J. Lubri. Technol., 105 (1983), p.458.

Google Scholar

[22] Tsai, H. J. and Jeng, Y. R., ASME J. Tribol., 124 (2002), p.736.

Google Scholar

[23] Jeng, Y. R. and Tsai, H. J., J. Electrochem. Soc., 150, 6 (2003), p. G348.

Google Scholar

[24] Jeng, Y. R. and Tsai, H. J., ASME J. Tribol., 127 (2005), in press.

Google Scholar

[25] Yu, C. M., Craig, K., and Tichy, J., J. Rheol. 38, 4 (1994), p.921.

Google Scholar

[26] Tseng, W. -T., Chin, J. -H., and Kang, L. -C., J. Electrochem. Soc., 146 (1999), p. (1952).

Google Scholar